## On the Luv-Lee Problem in the Simulation of Orographic Precipitation

G. Doms, J.-P. Schulz<sup>a</sup>, D. Majewski<sup>a</sup>, J. Förstner<sup>a</sup>, V. Galabov<sup>b</sup>

Spatial Distribution of Precipitation in Southwest Germany
Formation of Stratiform Precipitation and Parameterization
Sensitivity to Seeder-Feeder and Prognostic Precipitation
Conclusions

a) (DWD) b) National Institute of Meteorology and Hydrology, Bulgaria



## Precipitation 20/02-21/02/2002



#### LM 00 UTC + 06h-30h



**Operational LM** 

#### **Working Hypothesis**

The erroneous spatial distribution of precipitation over mountainous terrain (mainly during wintertime) might be due to

#### dynamical-numerical mechanisms

over-estimation of the mountain wave amplitude in case of stable stratification and high wind speeds

#### dynamical-microphysical mechanism

over-estimation of precipitation enhancement by the seeder-feeder effect due to neglecting the horizontal and vertical advective transport of snow (and rain) in the present parameterization scheme

#### **Parameterization of cloud microphysical processes**



Precipitation enhancement in mixed pase clouds:

Bergeron-Findeisen process

Seeder Feeder mechanism



#### Treatment of Precipitation in NWP Models

#### **Diagnostic Scheme**

 Simplified budget equations for rain and snow precipitation fluxes

$$-\frac{1}{\rho}\frac{\partial P_X}{\partial z} = S_X$$

- Column equilibrium saves CPU time and core memory
- High accuracy at larger scales
- Standard in NWP models

#### **Prognostic Scheme**

 Full 3D budget equations for rain and snow mixing ratios

$$\frac{\partial q_X}{\partial t} + \mathbf{v}_h \cdot \nabla q_X + w \frac{\partial q_X}{\partial z} - \frac{1}{\rho} \frac{\partial P_X}{\partial z} = S_X$$

- Computational expensive
- Requires a special numerical treatment of the sedimentation term due to CFL for fallout
- Necessary to account for horizontal and vertical transport in small-scale modelling (leeside precipitation, life-cycle in convective clouds)
- Standard in CRMs

# Calculation of trajectories for LM to estimate the drifting of snow

| Start level [hPa] | Distance [km] | Duration of drift [min] |
|-------------------|---------------|-------------------------|
| 500               | 71.4          | 40                      |
| 550               | 59.5          | 35                      |
| 600               | 47.6          | 29                      |
| 650               | 40.5          | 25                      |
| 700               | 32.1          | 21                      |
| 750               | 13.1          | 9                       |

Fall speed: 2 m/s

Fall down to the melting zone » 850 hPa

# Experiments

- Re-run of PYREX-IOPs
- LM case studies with 28, 14 and 7 km grid-spacing
- Switch-off riming and accretional growth (sensitivity to seeder-feeder mechanism)
- LM case studies using the 2-time-level scheme with diagnostic and prognostic treatment of rain and snow (seeder-feeder cut-off)

#### 24-h precipitation amount 20.2.-21.2.2002





#### 24-h precipitation amount 20.2.-21.2.2002

00 UTC + 06h-30h





LM without accrection and riming



Vertical cross sections at 48.4°N LM with drifting of precipitation 00 UTC + 15h

Specific water content of snow

#### Specific water content of rain



# Precipitation 20/02-21/02/2002

#### Observation



#### LM 00 UTC + 06h-30h



LM with drifting of precipitation





# Conclusions

- Gravity and mountain wave dynamics is well represented by the LM (PYREX)
- Lee-side distribution of precipitation is very sensitive to the seeder-feeder mechanism
- Including the 3-D transport of precipitation (in particular of snow) appears to significantly improve the distribution of precipitation on the upwind side and in the lee of mountains
- more case studies are necessary

- prognostic treatment of rain and snow needs about 50% more computing time for the total LM,
- new numerics (2-time-level scheme) have to be optimized and tested thoroughly,
- as an intermediate step, the prognostic precipitation scheme will be implemented within the operational 3-TL integration scheme using a semi-Lagrangian transport scheme (2Q 2004)