

# EuroTEPS - Targeted EPS for Europe

Inger-Lise Frogner, Trond Iversen and Martin Leutbecher (ECMWF)

Norwegian Meteorological Institute met.no

#### **EuroTEPS**

- Results from recent experiments with targeted EPS for Europe will be shown
- EuroTEPS is a part of the GLAMEPS-project
- EuroTEPS will provide initial and lateral boundary perturbations for multi-model limited area EPS for the short range for the HIRLAM and ALADIN countries
- It is also itself a part of the multi-model GLAMEPS ensemble
- It is a special version of ECMWF IFS EPS that is designed to be optimal for Europe in the short range (day 1-3)

#### TARGET AREAS



GLAMEPS integration domain (HIRLAM version)

Target area north (82N,15W,50N,50E)

Target area central (62N,20W,33N,44E)

Target area south (47N,23W,24N,32E)



#### Details of the experimental setup for EuroTEPS

- First experiments was performed with CY32R2 of the IFS-code, newest with the cycle: CY32R3
- Singular vectors are computed with:
  - T159 (as opposed to T42 for operational SVs at ECMWF)
  - 24h optimization time (as opposed to 48h for operational SVs at ECMWF)
  - Targeted in the vertical to the troposphere
  - Targeted SVs (TSVs) based on total energy norm
  - The TSVs are selected to be orthogonal to the operational SVs and also mutually orthogonal
- The perturbations from which EuroTEPS runs is made from a combination of the following SVs using Gaussian sampling:
  - 10 TSVs from each of the three European target areas
  - 10 evolved TSVs from each of the three European target areas
  - 50 SVs from the operational EPS (NHSVs)
  - 50 evolved SVs from the operational EPS
- Different amplitudes are assigned to the different sets of SVs, to give the desirable spread/skill relation



## **EXPERIMENTS** with cycle 32R3

- The perturbation amplitudes were reduced by 30% in the operational setup for EPS, this was due to the more active model in CY32R3. Operational amplitude in cy32R3: 0.014
- SV amplitude reduced by 25% to 0.0105
- TSV amplitude set to 0.0105
- Ratio = 1



# EuroTEPS: production (cy32R3)

- The LAM models need input on model levels
- Too much data and too slow to use MARS
- In agreement with ECMWF the model level data needed for HIRLAM and ALADIN are stored on:
  - hpce: hpce/tmp/ms/no/fai/hirlam/bnd/teps\_eur
  - ecfs: ec:/hirlam/bnd/teps\_eur/
- Two periods are available:
  - Summer 2007: 20070812 20070825 (00 UTC and 12 UTC) = 2 weeks
  - Winter 2008: 20080117 20080305 (00 UTC and 12 UTC) = 7 weeks



- TSVs for all three target areas: ca 600 SBUs
- EuroTEPS: ca 3000 SBUs

A total cost of ~3600 SBUs per run

This makes a total of: 3600 \* 2 times a
 day \* 9 weeks \* 7 days a week ≈
450 000 SBU (+ all the test with
 different amplitudes + + )



## Example of SVs. Mean of absolute value of mean NHSV. Temp. Lev 35 20070626 mean NHSVEVO. Temp. Lev 35 20070626





#### mean TSV north. Temp. Lev 35 20070627



#### mean TSVEVO north. Temp. Lev 35 20070627





#### mean TSVEVO central. Temp. Lev 35 20070627







#### mean TSVEVO south. Temp. Lev 35 20070627



Il Institute met.no

#### Difference in spread between EuroTEPS and EPS (7 winter weeks in 2008)





nor wegiun mereorological institute met.no





ıl Institute met.no



#### MSLP, Area ROC and BSS





## MSLP, ROC and COST/LOSS





#### MSLP, RELIABILITY DIAGRAM







Norwegian Meteorological Institute met.no



### T2m, Reliability diagram





#### 10 meter wind speed





# 10 meter wind speed, Reliability diagram

20070812 20070825 + 36h, THR = 10.00 EPS (AREA= .000)





### **Conclusions TEPS for Europe**

- The experiments are now running without any technical problems, including saving of model levels for LAMs.
- Two test periods are finished: 2 summer weeks in 2007 and 7 winter weeks in 2008.
- The TSVs targeted to the three European areas are behaving as expected, i.e. the structures are reasonable, both horizontally and vertically, and they are located in the right places.
- The spread is too small for the first hours of the forecasts, but the spread/skill relationship is very good from about 24 h (CY32R3)
- TEPS for Europe is capable of giving spread in the whole area of interest, that is in all parts of Europe for all forecast lengths.
- TEPS for Europe scores better or equal to EPS20 (only summer weeks verified so far)
- More experimentation is needed to find the optimal set up for TEPS for Europe

#### Outlook

- Type 1 experiments: establish first operational prototype
  - check the effect w.r.t. quality and computer costs of:
    - using one or two target areas in stead of three
    - reducing the ensemble size (e.g. 13 in stead of 21)
    - reducing the forecast length (e.g. 48h in stead of 72)
- Type 2 experiments: test further improvements of EuroTEPS:
  - fit EuroTEPS to the EPS structure planned at ECMWF
  - experiment with diabatic TSVs
  - Investigate possibilities for Hessian TSVs, or combining with other methods that use information about actual analysis error structures
  - Furthermore, we should prepare for an operational, timecritical facility at ECMWF.

#### Thank you for your attention



Norwegian Meteorological Institute met.no