

Results from the MOGREPS Regional Ensemble — A comparison of downscaled global perturbations versus perturbations from the ETKF for the regional ensemble.

Neill Bowler and <u>Sarah Beare</u> - EWGLAM Madrid October 2008.

This presentation covers the following areas

- Introduction to MOGREPS
- Experiment design
- Results
- Summary and conclusions

GH

MOGREPS Overview

- Global Ensemble (N144L38 T+72) run at 00Z and 12Z
- Regional Ensemble (24km,L38 T+54) run at 06Z and 18Z
- 23 perturbed members + control

- ETKF Initial Conditions
- Representation of model error
- Routinely run since September 2005
- Now fully operational

© Crown copyright Met Office

- 10 December 2006 13 January 2007
- One full forecast run per day at 18 UTC
- Both Global and Regional ensembles use UM vn6.1
- Identical 24km model versions and global LBCs used in each case.
- The ensemble using the regional ETKF was spun up for 1 week

Mean Spectrum =
$$\sum_{j}^{Ndays} \sum_{i}^{Nmem} Spectrum(X_{i,j} - \overline{X}_j)$$

X = perturbed member forecast \overline{X} = Ens mean forecast

256

128

© Crown copyright Met Office

Power Spectrum of 850hPa Temperature

Verification Results

- RMS Spread and Error
- Spread Error Correlation
- Continuous ranked probability score

•
$$RMSE_{c} = \sqrt{RMSE^{2} - ObsErr^{2}}$$

• Perturb each ensemble member by a random number drawn from Gaussian distribution.

 $X \sim N$ (mean = 0, variance = ObsErr²)

RMS Spread and Error T850

850hPa Temperature Continuous Ranked Probability Score

© Crown copyright Met Office

CRPS Differences (raw data)

			· · · · · · · · · · · · · · · · · · ·
Variable	T+6h	T+18h	T+30h
T 1.5m	0.09%	-0.11%	-0.35%
10m WS	-0.06%	-0.19%	-0.53%
PMSL	2.21%	1.70%	0.89%
6h Precip	-3.03%	-3.43%	-3.27%
⊤850	-0.51%	-0.58%	-1.49%
T500	0.95%	0.54%	-0.15%
T250	0.42%	0.72%	-0.28%
WS850	-0.75%	-0.11%	-0.83%
WS500	0.72%	0.01%	0.41%
WS250	1.00%	1.46%	0.13%
Z500	0.89%	0.35%	-0.42%

Positive = regional perturbations better

Negative = global perturbations better

© Crown copyright Met Office Red/blue = statistically significant results at 5% level

CRPS Differences (calibrated data)

Variable T+6h T+18hT+30hT 1.5m 0.10% 0.05% -0.23% -0.36% 10m WS -0.40% -0.17% 0.55% -0.49% -0.76% PMSL -0.77% 6h Precip -1.13% -0.68% T850 -0.20% -0.13% -1.10% -0.27% -1.00% 0.06% T500 T250 0.49% 0.52% -0.31% -0.70% -0.07% -1.04% WS850 WS500 0.51% -0.46% 0.10% WS250 1.06% -0.20% 0 44 % 0.59% Z500 -0.41% -1.09%

Positive = regional perturbations better Negative = global perturbations better © Crown copyright Met Office

- ETKF perturbations for the regional ensemble contain more power on scales < 400 km, for up to 12hr into the forecast.
- Differences in spread observed in the two ensembles.
- RMSE of ensemble mean forecast for global perturbations lower than RMSE of regional ETKF perturbations.
- The performance of the two ensembles are very similar with higher skill observed when the perturbations are derived from the global ensemble.
- Improving on "dynamical downscaling" with explicit regional ensemble IC perturbations could be difficult.
- Implications for the MOGREPS-R ensemble.

Questions and Answers

© Crown copyright Met Office

Rank Histogram PMSL

Rank Histogram T850

Bias Correction and calibration

• Step one

Perturbed Fc – Mean error (Bias) of Ens Mean Fc

• Step two

Recalculate RMS spread about the ensemble mean

• Step three

Adjust the spread to match the RMSE of the ensemble mean forecast.

- Global ETKF uses localisation, transform matrix calculated using T+12 forecasts and applied to perturbations valid at T+12.
- No localisation applied to regional ETKF
- Transform matrix and inflation factor calculated using observations centred around 00Z (12Z) for a 06Z (18Z) run of the regional ensemble, i.e., T+6 forecast.
- Transform matrix applied to the T+12 perturbations valid at 06 or 18Z.
- Offset assumes the non linearities of small perturbations are negligible
- Inflation factor calculated using radiosonde observations only.

Continuous Ranked Probability Score

- Overall measure compares the ensemble and observation distributions.
- CRPS ≡ the Brier Score integrated over all possible thresholds.

or

 CRPS ≡ the Ranked Probability Score with infinitely small bin sizes.

or

- CRPS ≡ Mean Absolute Error (in the deterministic case)
- Takes the unit of the variable calculated, smaller the better.

- Each day in record is treated separately
- Assumes no correlation in errors between days but that errors between stations are perfectly correlated.
- Because both ensembles are subject to the same weather, the difference in the CRPS may be more robust than the score itself.

RMS Spread and Error - PMSL

Bowler and Mylne (2008)

ETKF Perturbations for a regional ensemble prediction system.

Submitted to Quart. J. Roy. Meteor. Soc.

Continuous Ranked Probability Score PMSL

