THE EFFECT OF STRATIFICATION ON THE ROUGHNESS LENGTH AN DISPLACEMENT HEIGHT

S. S. Zilitinkevich^{1,2,3}, <u>I. Mammarella^{1,2}</u>, A. Baklanov⁴, and S. M. Joffre²

- 1. Atmospheric Sciences, University of Helsinki, Finland
- 2. Finnish Meteorological Institute, Helsinki, Finland
- 3. Nansen Environmental and Remote Sensing Centre / Bjerknes Centre for Climate Research, Bergen, Norway
- 4. Danish Meteorological Institute, Copenhagen, Denmark

Reference

S. S. Zilitinkevich, I. Mammarella, A. A. Baklanov, and S. M. Joffre, 2008: The effect of stratification on the roughness length and displacement height. *Boundary-Layer Meteorology.* In press.

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Content

• Roughness length and displacement height:

$$u(z) = \frac{u_*}{k} \left[\ln \frac{z - d_{0u}}{z_{0u}} + \Psi_u \left(\frac{z}{L}\right) \right]$$

- No stability dependence of z_{0u} (and d_{0u}) in engineering fluid mechanics: neutral-stability z_0 = level, at which u(z) plotted vs. $\ln z$ approaches zero; $z_0 \sim \frac{1}{25}$ of typical height of roughness elements, h_0
- Meteorology / oceanography: h_0 comparable with MO length

 $L = \frac{u_*^3}{-\beta F_{\theta s}}$

• Stability dependence of the actual roughness length, z_{0u} : $z_{0u} < z_0$ in stable stratification; $z_{0u} > z_0$ in unstable stratification

Surface layer and roughness length

Self similarity in the surface layer (SL) Height-constant fluxes:

 u_* and z serve as turbulent scales: Eddy viscosity ($k \approx 0.4$) Velocity gradient

 $5h_0 < z < 10^{-1}h$ $\tau \approx \tau \mid_{z=5h_0} \equiv u_*^2$ $u_T \sim u_*, l_T \sim z$ $K_{M} (\sim u_{T} l_{T}) = k u_{*} z$ $\partial U / \partial z = \tau / K_{M} = u_{*} / kz$ Integration constant: $U = k^{-1}u_* \ln z + \text{constant} = k^{-1}u_* \ln(z/z_{0...})$

 $z_{0\mu}$ (redefined constant of integration) is "roughness length" $U = k^{-1}u_* \ln[(z - d_{u0})/z_{u0}]$ "Displacement height" $d_{0\mu}$ Not applied to the roughness layer (RL) $0 < z < 5h_0$

Parameters controlling *z*_{0*u*}

<u>Smooth surfaces</u>: viscous layer $\rightarrow z_{0u} \sim v / u_*$

<u>Very rough surfaces:</u> pressure forces depend on: obstacle height h_0 velocity in the roughness layer $U_R \sim u_*$

 $z_{0u} = z_{0u}(h_0, u_*) \sim h_0$ (in sand roughness experiments $z_{0u} \approx \frac{1}{30} h_0$) No dependence on u_* ; surfaces characterised by z_{0u} = constant **<u>Generally</u>** $z_{0u} = h_0 f_0(\text{Re}_0)$ where $\text{Re}_0 = u_* h_0 / V$

Stratification at M-O length $L = -u_*^3 F_b^{-1}$ comparable with h_0

Stability Dependence of Roughness Length

For urban and vegetation canopies with roughness-element heights (20-50 m) comparable with the Monin-Obukhov turbulent length scale, *L*, the surface resistance and roughness length depend on stratification

Background physics and effect of stratification

Physically z_{0u} = depth of a sub-layer within RL ($0 < z < 5h_0$) with 90% of the velocity drop from $U_R \sim u_*$ (approached at $z \sim h_0$)

From
$$\tau = K_{M(RL)} \partial U / \partial z$$
, $\tau \sim u_*^2$ and $\partial U / \partial z \sim U_R / z_{0u} \sim u_* / z_{0u}$
$$\frac{z_{0u} \sim K_{M(RL)} / u_*}{z_{0u} \sim u_*}$$

 $K_M(RL) = K_M(h_0 + 0)$ from matching the RL and the surface-layer

Neutral: $K_M \sim u_* h_0 \Rightarrow$ classical formula $z_{0u} \sim h_0$ Stable: $K_M = k u_* z (1 + C_u z / L)^{-1} \sim u_* L \Rightarrow \frac{z_{0u}}{z_{0u}} \sim L$ Unstable: $K_M = k u_* z + C_U^{-1} F_b^{1/3} z^{4/3} \sim F_b^{1/3} z^{4/3} \Rightarrow z_{0u} \sim h_0 (-h_0 / L)^{1/3}$

Recommended formulation

Neutral
$$\Leftrightarrow$$
 stable $\frac{z_{0u}}{z_0} = \frac{1}{1 + C_{SS}h_0/L}$
Neutral \Leftrightarrow unstable $\frac{z_{0u}}{z_0} = 1 + C_{US} \left(\frac{h_0}{-L}\right)^{1/3}$

Constants:
$$C_{SS} = 8.13 \pm 0.21$$
, $C_{US} = 1.24 \pm 0.05$

Experimental datasets

Sodankyla Meteorological Observatory, Boreal forest (FMI)

 $h \approx 13$ m, measurement levels 23, 25, 47 m

BUBBLE urban BL experiment, Basel, Sperrstrasse (Rotach et al., 2004)

h ~ 14.6 m, measurement levels 3.6, 11.3, 14.7, 17.9, 22.4, 31.7 m

Bin-average values of z_0 / z_{0u} (neutral- over actual-roughness lengths) versus h_0/L in stable stratification for Boreal forest (h_0 =13.5 m; z_0 =1.1±0.3 m). Bars are standard errors; the curve is z_0 / z_{0u} =1+8.13 h_0 / L .

Bin-average values of z_{0u} / z_0 (actual- over neutral-roughness lengths) versus h_0/L in stable stratification for boreal forest (h_0 =13.5 m; z_0 =1.1±0.3 m). Bars are standard errors; the curve is $z_{0u} / z_0 = (1+8.13h_0 / L)^{-1}$.

Displacement height over its neutral-stability value in stable stratification. Boreal forest ($h_0 = 15 \text{ m}$, $d_0 = 9.8 \text{ m}$).

The curve is
$$d_{0u} / d_0 = 1 + 0.5 (h_0 / L) (1.05 + h_0 / L)^{-1}$$

Convective eddies extend in the vertical causing $z_0 > z_{0u}$

VOLUME 81, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AUGUST 1998 Y.-B. Du and P. Tong, Enhanced Heat Transport in Turbulent Convection over a Rough Surface

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Unstable stratification, Basel, z_0/z_{0u} vs. Ri = $(gh_0/\Theta_{32})(\Theta_{18}-\Theta_{32})/(U_{32})^2$ Building height =14.6 m, neutral roughness z_0 =1.2 m; BUBBLE, Rotach et al., 2005). h_0/L through empirical dependence on Ri on (next figure) The curve $(z_0/z_{0u} = 1+5.31 \text{Ri}^{6/13})$ confirms theoretical $z_{0u}/z_0 = 1 + 1.15(h_0/-L)^{1/3}$

University of Helsinki

Displacement height in unstable stratification (Basel): $d_0 / d_{ou} - 1$ versus Ri

The line confirms theoretical dependence: $d_{0u} = \frac{d_0}{1 + C_{DC} (h_0 / -L)^{1/3}}$ University of Helsinki

STABILITY DEPENDENCE OF THE ROUGHNESS LENGTH

in the "meteorological interval" -10 < h_0/L <10 after new theory and experimental data <u>Solid line</u>: z_{0u}/z_0 versus h_0/L <u>Thin line</u>: traditional formulation $z_{0u} = z_0$

STABILITY DEPENDENCE OF THE DISPLACEMENT HEIGHT

in the "meteorological interval" -10 < h_0/L <10 after new theory and experimental data <u>Solid line</u>: d_{0u}/d_0 versus h_0/L <u>Dashed line</u>: the upper limit: $d_0 = h_0$

Conclusions (Roughness length)

- **Traditional:** roughness length and displacement height fully characterised by geometric features of the surface
- New: essential dependence on hydrostatic stability especially strong in stable stratification
- Applications: to urban and terrestrial-ecosystem meteorology
- **Especially:** urban air pollution episodes in very stable stratification

