

Recent activities and outlook on data assimilation at Météo-France and partner Aladin countries

C. Fischer,

P. Brousseau, V. Guidard, M. Monteiro (Portugal), T. Montmerle, Z. Sahlaoui (Morocco), E. Wattrelot

Operational D.A. systems at MF

- Daily run data assimilation systems at Météo-France :
 - ARPEGE 4D-VAR: global model (15 km over Europe, 90km over the S.-W. Pacific)
 - ALADIN-France 3D-VAR: regional model (9.5km)
 - AROME(-France) 3h 3D-VAR: convective scale model (2.5km)
 - ALADIN-Réunion 3D-VAR: regional model over the Indian Ocean (10km)

ARPEGE stretched grid and ALADIN-FRANCE domain

AROME France domain

Change of horizontal thinning for radiances in ARPEGE

- **Operational horizontal thinning** presently is 250 km
- In E-suite, horizontal thinning is decreased to 125 km \Rightarrow ~ 3.5 times more radiances are assimilated

More impact in Southern Hemis. because this area has less conventional data & because we assimilate more data over sea than over land

Example: increased density only for IASI

Scores with respect to ECMWF analyses over a 3-week period RMS(250km) - RMS(125km)

Athens, Sept. 28th - Oct. 1st 2009

16th SRNWP & 31st **EWGLAM** meeting

Forthcoming changes in ARPEGE 4D-VAR

- Change of resolution in forecast model: T800C2.4L70 (10km Europe / 60km S.-W. Pacific)
- New resolution for the 4D-VAR analysis increment: between T340L70 and T400L70
- Move to 3 outer loops and minimizations
- New tunings for the background and observational error standard deviations (for σb: from 2.0 to 1.6; for σo: from 1.0 to 0.9)
- New moist simplified physics scheme including some microphysics in TL/AD models
- Progressively increase the usage of Ensemble Assimilation information (6-member parallel D.A. suites); link with the EPS system (PEARP)
- Double the density of about all radiance types (change the scale of data use from one spot every 250 km to one every 125 km), with a higher priority put on IASI
- NOAA-19

16th SRNWP & 31st EWGLAM meeting

AROME operational configuration

- AROME operational configuration uses a 3-h frequency continuous assimilation cycle and performs 30-hr forecasts at synoptic times (00, 06, 12 and 18 UTC).
- the ALADIN-FRANCE operational suite provides :
 - Lateral boundary conditions
 - Surface initial conditions : CANARI analysis (OI) at 00, 06, 12 and 18 UTC (the previous AROME forecast is used otherwise).

Background error statistics "B" : winter/summer

- Background error statistics depend on the meteorological situation => limitation of a "climatological" B matrix
- Use of statistics "of the day" ?

1(

Background error statistics : heterogeneous B matrix

Thibault Montmerle (Following P. Courtier, 1998, already tested by M. Buehner, 2008).

Use specific background error statistics in clear air and precipitating areas, resp. :

 $\mathbf{B} = \alpha \mathbf{B}_r + \beta \mathbf{B}_{nr}$ With: $\alpha = \mathbf{F}\mathbf{M}\mathbf{F}^{-1}$ and $\beta = \mathbf{F}(\mathbf{1}-\mathbf{M})\mathbf{F}^{-1}$

M: grid point mask derived from observed radar reflectivity.

 ${f B}_r$ and ${f B}_{nr}$ are separately computed by performing statistics on an assimilation ensemble of precipitating cases, considering a mask based on simulated precipitations.

The increment is written:

$$\delta x = \mathbf{B}^{1/2} \chi = \left(\alpha^{1/2} \mathbf{B}_r^{1/2} + \beta^{1/2} \mathbf{B}_{nr}^{1/2} \right) \left(\begin{array}{c} \chi_1 \\ \chi_2 \end{array} \right)$$

 \Rightarrow Which implies doubling the control variable χ and the gradient

 $\nabla_{\chi}J$

- Comparisons between structure functions :
 - Smaller horizontal correlation length scales in precipitating areas

• Smaller σ_b for q and T in precipitating areas because the statistics are performed <u>Athusing saturated profiles</u> 16th SRNWP & 31 \Rightarrow Precipitating observations can be used with eligher density

Background error statistics : heterogeneous B matrix (2)

Multivariate formulation of errors:

Vertical profile of spectral averages of the percentage of explained humidity variance

 \Rightarrow B_r and B_{nr} are characterized by very different structure functions, which is coherent with the model's physics in both precipitating and non-precipitating areas.

Radar data assimilation : Inversion method of reflectivity profiles $E(x) = \sum_{j} x_{j} \frac{\exp \frac{-1}{2} \cdot //y_{0} - y_{s}(x_{j})//^{2}}{\sum \exp \frac{-1}{2} \cdot //y_{0} - y_{s}(x_{j})//^{2}}$ Caumont, 2006: use of model profiles in the vicinity of the observation as representative database Model first guess Observations $\boldsymbol{y_{po}^{U}} = \sum_{\substack{i \in \\ \text{neighbours}}} \boldsymbol{x_{i}^{U}} \frac{\exp\left(-\frac{1}{2} \|\boldsymbol{y_{Z}} - \boldsymbol{H_{Z}(x_{i})}\|^{2}\right)}{\sum \exp\left(-\frac{1}{2} \|\boldsymbol{y_{Z}} - \boldsymbol{H_{Z}(x_{i})}\|^{2}\right)}$ neighbours y_{po}^{U} : column of pseudo-observed relative humidity, y_z : column of observed reflectivities, \mathbf{x}_{i}^{U} : column of relative humidity, $H_{Z}(x_{i})$: column of simulated reflectivities.

- Consistency between the retrieved profile and clouds/precipitations that the model is able to create
- Possibility of wrong solution if the model is too far from reality... needs check

ioujours un temps u avance

Outlook for LAM's

- ALADIN-France:
 - Change of resolution: 7.5 km, 70 levels
 - Probably switch off Aladin-France as intermediate coupling model between global and convective scale systems by end of 2009 or beg. Of 2010
- ALADIN 3D-VAR elsewhere:
 - Aladin-Réunion, Aladin Outre-Mer (Polynesia, New Caledonia, Antilles-Guyana)
 - Morocco: new computer platform in 2010
 - Several LACE countries (=> refer to Gergö's talk)
 - R&D on 2D plane wavelets (A. Deckmyn, Belgium)
- AROME: works currently in progress on :
 - the use of observations at a higher spatial resolution (Aircraft, IR rad. Etc.)
 - the assimilation of reflectivities (in pre-operational suite next winter)
 - a surface assimilation coherent with the model's surface scheme and resolution (=> refer to talks by Alena and Ludovic)
 - Further plans on algorithmics :
 - take a better advantage of high-frequency observations using :
 - 3D-FGAT (First Guess at Appropriate Time)
 - Incremental Digital Filter Initialization allowing 1-h cycling (?)
 - Use flow dependent forecast error statistics : ensemble assimilation based

Athens, Sept. 28th - Oct. 1st 2009

16th SRNWP & 31st EWGLAM meeting

Athens, Sept. 28th - Oct. 1st 2009

16th SRNWP & 31st EWGLAM meeting

σας ευχαριστώ για την προσοχή σας

