

Stochastic Physics in MOGREPS and plans for perturbations of surface fields

Warren Tennant (31st EWGLAM Workshop 28 Sep - 1 Oct 2009)

© Crown copyright Met Office

MOGREPS – current status

• 24-member ensemble designed for short-range forecasting

- Global ensemble:
 - N144L38 (~90km) to T+72
 - Also T+15 days at ECMWF for THORPEX TIGGE archive
- Regional ensemble:
 - NAE 24km, 38 levels to T+54
- MOGREPS-G run at 0Z and 12Z: MOGREPS-R run at 6Z & 18Z
- ETKF for initial condition perturbations (global only)
- Stochastic physics:
 - SKEB1 (global only)
 - Random Parameters

MOGREPS became fully operational in Sep 2008 after 3 years of trials

MOGREPS – new developments

- Resolution upgrade (Jan 2010)
 - Global: ~90km L38 -> ~60km L70
 - Regional: 24km L38 -> 18km L70
- Model error estimation
 - Random Parameters: Perturb physics scheme coefficients, e.g. Critical RH for condensation
 - Backscatter of kinetic energy to resolved scales from unresolved convection and excessive numerical advection scheme diffusion
 - Perturb surface fields: SST, soil moisture, others...
 - Stochastically Perturbed Parameterisation Tendencies (similar to ECMWF)

© Crown copyright Met Office

Regional system resolution upgrade

On resolution upgrade:

• improved Brier Scores (in each component) for various (but not all) parameters

 notice how the reliability improves with lead-time (possibly related to initial bias caused by start data?)

New Stochastic Physics Scheme (testing now completed):

SKEB2 – Stochastic Kinetic Energy Backscatter version 2

- Generates a wind-increment field at each time-step
- This forces the large resolved scales with kinetic energy thought to be lost due to excessive dissipation in numerical advection and also not fed back from convection schemes
- Energy dissipation calculated using Smagorinsky-Lilly 2D turbulence and vertical mass flux
- Stochastic forcing provided through a spectral field with evolving wave components

© Crown copyright Met Office

SKEB2 status at SRNWP in June 2009

© Crown copyright Met Office

SKEB2: Improved vertical structure in forcing pattern

© Crown copyright Met Office

Plans to test surface perturbations

SST perturbations

- Impose a random perturbation unique to each ensemble member at the start of run
- Keep this constant during the forecast
- The perturbation should be able to change the anomaly sign without adversely affecting the regional heat balance

Soil-moisture and surface-type perturbations

- Sharpen gradients to increase impact
- Need to consider how these would vary during the run

Stochastic forcing pattern

- Start with a prescribed power spectrum
- Draw wave coefficients from a uniform random distribution
- Generate a spherical harmonic pattern
- Same technique used in the backscatter scheme

SST anomaly perturbations from spectral pattern

SSTANOM * SpecPattern

Verification of global system

 Month-trial statistics against observations

Case study of mid-latitude cyclone "Klaus"

• Impact of SKEB2 on global system and subsequent impact on regional system

Impact of SKEB2 on NH 850hPa Winds (shown at SRNWP in June 2009)

Relative contributions of Initial perturbations and Stochastic Physics to EPS spread/skill

Case Study :: Storm winds in N Spain/S France – Jan 2009

Wind-speed plume 43.5N 1.6W (Global Model Forecast)

Wind-speed plume 43.5N 1.6W (Regional Model Forecast)

NAECTL IC = 18Z23Jan2009:: 120 110 90 -80 -70 -60 -50 -40 -30 -20 -10 knots 0 0 0 12Z 18Z 00Z 24JAN 06Z 18Z 00Z 23JAN 06Z 0ÖZ 25JAN 22JAN

NAESKEB :: IC = 18Z23Jan2009

Area-averaged Brier Score for different forecast leadtimes of event: WindSpeed > 75 Kts at model_level=6

1. At longer lead-times the accuracy of the regional EPS system mirrors that of the global system.

2. At shorter lead-times this is less evident

- Resolution upgrade suggests good impact on MOGREPS
- SKEB2 has a positive impact on the MOGREPS-G with downstream impact on MOGREPS-R
- Plans to investigate impact of surface perturbations on MOGREPS spread, especially for near-surface variables