

High resolution model developments at the Met Office

Mike Bush

Thanks to Jorge Bornemann, Peter Lean, Alison Eadie, Pete Francis, Martin Young and many others

for 31st EWGLAM and 16th SRNWP Annual Meeting 2009 28th September – 1st October 2009 Athens, Greece

Met Office

Talk Outline

- What is the UKV convective scale model good at ? and what is it not good at ?
- L70 NAE better cloud and inversions thanks to improved vertical resolution

Talk Outline

- What is the UKV convective scale model good at ? and what is it not good at ?
- L70 NAE better cloud and inversions thanks to improved vertical resolution

On Demand Model

9 Domains

- 1. Far South West
- 2. South West
- 3. South
- 4. South East
- 5. Northern Ireland
- 6. Northern England
- 7. North Sea Coast
- 8. Scotland
- 9. Shetland

• Nested in UK4.

• 300 x 300 gridboxes, approximately 450 km x 450 km.

- 1.5 Km gridbox length.
- 70 levels.
- Spin-up from UK4 T+1. Forecast length 18 hours.
- LBC update frequency: 30 min.
- Available after any main UK4 forecast.
- Discontinued 1st August 2009

UKV Model

- Nested in NAE (12 Km gridlength)
- Variable Resolution. Outer rim 4 Km gridlength
- Inner area 1.5 Km gridlength
- Inner area size:
 - 622 gridboxes E-W
 - 810 gridboxesN-S
- Full area size:
 - 744 gridboxes E-W
 - 928 N-W
- LBC update frequency: 30 min.
- 70 vertical levels. Model top: 40000 m.
- Timestep: 50 sec.
- Forecast length: 24 hours

UKV vs UK4 science differences

- Convection scheme turned off in UKV model
- CAPE based CAPE timescale in UK4 model shallow convection is still parametrized
- Shallow convection partly resolved by UKV dynamics
- Boundary layer scheme allowed to work the full depth of the model to mitigate instabilities (see poster)
- 2D Smagorinsky- Lilley turbulence scheme replaces horizontal diffusion

•Orographic drag off in UKV model

UK4 CAPE based CAPE timescale

Spin up from boundaries

- Orographically forced cloud/precip
- Inland penetration of marine showers/clouds
- Precipitation structure within fronts/line convection
- Convergence lines from peninsulas
- Sea breezes

Shower spinup 12z 18/06/09

NAE has shower signal in the right place.

UKV shows more showers (i.e. less spin up) at W boundary.

Spin up from boundaries

- Orographically forced cloud/precip
- Inland penetration of marine showers/clouds
- Precipitation structure within fronts/line convection
- Convergence lines from peninsulas

•Sea breezes

Monday 1500Z 01/06/2009 (t+12h)

Convection over orography 01/06/09 15Z

Deep convection initiation

• RADAR

UKV

Ottery St Mary hailstorm 30/10/08

The exceptional Ottery hailstorm of 30th October 2008

 Pool of anomalously deep cold air transferred south across the U.K. in association with a marked trough extension at upper levels

- Short wave upper trough developed upstream
- Low pressure area with occluded front crossed SW England. Low level southerly air was warm and moist
- First heavy rainfall cell location was determined by local convergence and uplift over Woodbury common
- Local topography played a significant role by funelling moist air up the Otter Valley

Analysis chart 30/10/08 00UTC

Observations and model guidance

 Actual rainfall accumulations ~200mm, with 25cm of hail falling in 2 hours

- On Demand model forecast a 3 hour accumulation of 70-80mm in a 40km x 40km square containing Ottery and 80-90mm in a nearby square
- The UK4 model had nothing in the 40km x 40km square containing Ottery and a 3 hour accumulation of 40-50mm in a nearby square
- Some MOGREPS-R members indicated heavy precipitation, but 24km resolution limits usefulness

Ottery Storm. Radar and On Demand Model 01UTC

Ottery Storm. Radar and On Demand Model 02UTC

- Spin up from boundaries
- Orographically forced cloud/precip
- Inland penetration of marine showers/clouds
- Precipitation structure within fronts/line convection
- Convergence lines from peninsulas
- Sea breezes

North Sea Wintry Showers

Inland penetration of showers is well represented.

- Spin up from boundaries
- Orographically forced precip/cloud
- Inland penetration of marine showers/clouds
- Precipitation structure within fronts/line convection
- Convergence lines from peninsulas
- Sea breezes

- Spin up from boundaries
- Orographically forced precip/cloud
- Inland penetration of marine showers/clouds
- Precipitation structure within fronts/line convection
- Convergence lines from peninsulas
- Sea breezes

UKV ppn didn't develop soon enough, but positioning is well handled

- Spin up from boundaries
- Orographically forced precip/cloud
- Inland penetration of marine showers/clouds
- Precipitation structure within fronts/line convection
- Convergence lines from peninsulas

Sea breezes

Shallow cumulus over land

• 24/06/09 13Z

- Predictability arising from sea breezes and orography
- Brown shading indicates low cloud

Sea breeze and temperatures

• 19/08/09

 Sea breeze moves inland through the afternoon

UKV doesn't do so well at...

 "Imported" convection (such as an MCS) that has naturally low predictability and is often poorly handled by the driving model.

- Convection driven by upper level forcing
- Stratocumulus unless you have data assimilation

25/05/09 18Z – UK4 vs UKV

UK 4KM TOTAL PRECIPITATION VALID AT 18Z ON 25/ 5/ 2009 T + 15 Operational uk4 UKYS TOTAL PRECIPITATION VALID AT 18Z ON 25/ 5/ 2009 T + 15 Operational ukys 2010/2015/2511/2010 mm/hr mm/hr >=32.0 **≥**32.0 **4**32.0 16.0 A.0 2.0 1.O 0.5 0.25 0.03 0.03

25/05/09 21Z – UK4 vs UKV

UK 4KM TOTAL PRECIPITATION VALID AT 21Z ON 25/ 5/ 2009 T + 18 Operational uk4 UKYS TOTAL PRECIPITATION VALID AT 21Z ON 25/ 5/ 2009 T + 18 Operational ukvs 200905252100 mm/hr >=32.0 =32. 16.0 8.0 1.0 Ó.5 0.250.0312

UKV doesn't do so well at...

- "Imported" convection (such as an MCS) that has naturally low predictability and is often poorly handled by the driving model.
- Convection driven by upper level forcing
- Stratocumulus unless you have data assimilation

15/09/09 18Z upper level forcing

15/09/09 case

• Upper vortex over near continent

- Occluded warm plume wrapped around northern flank
- Profile moist in depth and neutrally stratified
- Modest CAPE and updraught/downdraught strengths
- Efficient rainfall production as air parcels stay in cloud for a long time and original convergence zones are not destroyed by downdraughts
- Lack of surface convergence

15/09/09 case

MetOffice

• Successive UKV (and also UK4) runs seriously underestimated the intensity of the rainfall band

 6hr rainfall totals to 21Z included 47mm at S Farnborough, 41mm at Odiham and 20mm at London W/C. Max hourly rates were 16 mm/hr – 20 mm/hr

• UKV had maximum rates of 8mm-16mm per hour and maximum 6hr accumulations of 16mm - 32mm

15/09/09 18Z UK4 vs UKV (no DA) vs UKV with DA

6 hourly accum from different UKV runs

UKV op 6h accumulated precipitation [mm] Tuesday 2200Z 15/09/2009 (t+19h)

UKV op 6h accumulated precipitation [mm] Tuesday 2200Z 15/09/2009 (t+13h)

UKV doesn't do so well at...

 "Imported" convection (such as an MCS) that has naturally low predictability and is often poorly handled by the driving model.

- Convection driven by upper level forcing
- Stratocumulus unless you have data assimilation

Low cloud 18/09/09 06UTC UK4 vs UKV (no DA) vs UKV with DA

Met Office

Low cloud 18/09/09 11UTC UK4 vs UKV (no DA) vs UKV with DA

Talk Outline

- What is the UKV convective scale model good at ? and what is it not good at ?
- L70 NAE better cloud and inversions thanks to improved vertical resolution

L70 compared with L38

- L70 has 21 levels in the boundary layer (bottom 3km) compared to 13 levels in L38.
- The greatest reduction in layer thicknesses of L70 versus L38 is at 10km where the resolution goes from 1km (L38) to 500m (L70).
- Lowest model level unchanged at 10m for u and v winds and 20m for theta
- L70 lid at 80km compared to 40km for L38.

Cloud cover verification from Parallel Suite

Fractional Cloud Cover: Surface Obs Equalized and Meaned from 8/9/2009 00Z to 30/9/2009 18Z

Areas: + Reduced NAE Model area

Cloud cover verification from Parallel Suite

Fractional Cloud Cover(0.8): Surface Obs Equalized and Meaned from 8/9/2009 00Z to 30/9/2009 18Z NAE Oper ____ NAE PS22 ____ Reduced NAE Model area Cases: Areas: 0.35 0.70 0.20 1.05 1.00 0.65 0.30 0.18 category Probability of Detection, category 2 Frequency Blas, category 2 0.60 0.95 Probability of False Detection, ETS 0.25 0.16 0.90 0.55 0.20 0.14 0.85 0.50 0.15 0.80 0.45 0.12 24 - 12 12 36 12 24 36 48 12 24 36 48 12 24 36 0 48 60 - 12 0 60 - 12 0 60 - 12 0 48 60 ForecastRange (hh) Forecast Range (hh) ForecastRange (hh) Forecast Range (hh)

90% error bars calculated using Monte Carlo method

Cloud cover at T+0

Fractional Cloud Cover: Surface Obs

Cases: - NAE_L38 - NAE_L70

Areas: +--+ WMO Block 03 station list

Model Assessment and emphasis

- NAE low cloud in initial conditions is even worse than background, with most of the British Isles cloud free (Eddy Carroll, 24/12/08).
- Fields modified again to increase cloud cover in a major way (Eddy Carroll, 25/12/08).
- 06Z NAE continues to struggle with low cloud assimilation across parts of the UK (Andy Page, 26/12/08).

Low cloud L38, L70 and T+0 diff 00Z 25/12/08

DGRIG Atmos low cloud amount at 0000 25/12/08 from 0000 25/12/08

DGUYF minus DGRI9 Difference Atmos ica civud amount at 0000 25/12/08 fram 0000 25/12/08

L70 – L38 T15 difference at T+00

D907F minus D9R19 Difference Almos temperatures (1.5m at -1.000 metree at 0000 25/12/08 from 0000 25/12/08

Screen Temperature at T+0

Temperature (Kelvin) at Station Height: Surface Obs

Cases: ---- NAE_L38 --- NAE_L70

Areas: +--+ WMO Block 03 station list

Screen Temperature at T+24

Temperature (Kelvin) at Station Height: Surface Obs

Cases: ---- NAE_L38 --- NAE_L70

Areas: +--+ WMO Block 03 station list

Model inversion comparison algorithm (Peter Lean)

- L38 and L70 model level data are read in
- Data regridded to a common fine scale (10m) vertical grid
- Diagnoses columns where an inversion is present
- An inversion is defined as being a 2 degree temperature rise within 200m of base and between 470m and 3000m
- If an inversion is present in both runs, then the inversions in both L38 and L70 are averaged relative to the diagnosed inversion base
- This removes the smoothing that occurs if inversions at many different locations (and therefore with different heights) are just simply averaged

Model inversions >2 degrees 00Z 25/12/08

0 0.5 1 0 0.5 1

Area covered by inversions:

More inversions
in L70

Guidance issued to Foreign and Commonwealth Office 10UTC 23/09/09

NAE 12 UTC run 23/09/09 6 hourly accumulation from 12UTC to 18UTC

Pantelleria 201mm 12 hours to 18UTC 23rd Lampedusa 162mm 12 hours to 06 UTC 24th © Crown copyright Met Office

Model ppn accumulations Black = 64 -128mm White = >128mm Peak value was 206mm

Questions and answers