

Development of nonhydrostatic models at the JMA

Junichi Ishida Numerical Prediction Division / Japan Meteorological Agency j-ishida@met.kishou.go.jp Meso Scale Model (MSM) at JMA (operating since Mar. 2001)Objectives: Disaster prevention / Aviation forecastResolution: 5kmForecast length: 33hr (03,09,15,21 UTC) 15hr (00,06,12,18 UTC)No. of grid points: 721 x 577Levels: 50 levels up to 21,800mForecast model: JMA nonhydrostatic model (JMANHM) since Sep. 2004Data assimilation: 4D-Var based on JMANHM since Apr. 2009

Forecast Domain and Topography of MSM

A region of the same size (for reference)

Development of Local Forecast Model (LFM) at JMA

- : Disaster prevention / Aviation forecast
- Resolution : 2km

Objectives

- Forecast Domain : 3 domains to cover the whole area of the JMA radar network
- Operation : Planning to start operation in Mar. 2012

Development schedule of LFM

Phase 1: Jun. 2006 – Mar. 2009 Domain ... Around Tokyo (300x300km²) To check the basic characteristic of LFM

- Phase 2: Aug. 2009 Feb. 2011 Domain ... Centre region To improve the issues revealed at the Phase 1
- Phase 3: Mar. 2011 Feb. 2012 Domain ... Centre region To verify the total performance of LFM
- Operation : Mar. 2012 Domain ... 1 domain (Mar. 2012-) 3 domains (Mar. 2013-)

•A new super computer was installed in Apr. 2009 and the LFM system has been transplanted.

Current status of LFM (experimental operating since Aug. 2009)

Resolution : 2km

Levels

- Forecast length : 12hr
- No. of grid points : 800 x 550
 - : 60 levels up to 20,500m
- Forecast model : JMA nonhydrostatic model (JMANHM)
- Data assimilation : 3D-Var

Quantitative Precipitation Forecast 06 UTC on 12th Sep. 2009 Initial time is 00 UTC on 12th 2009

Overview of JMANHM

- Fully compressible equations with map factors
- Hybrid terrain-following vertical coordinate
- The terms responsible for sound and gravity waves
 - Split explicit scheme
- Advection terms
 - Horizontal : fourth order , Vertical : second order
- Cloud microphysics
 - Bulk method: qc,qr,qci,qs,qg,Nci
- Cumulus parameterization
 - Kain-Fritsch scheme (not used in LFM)
- Surface processes
 - computation of bulk coefficients : Beljaars and Holtslag
- Boundary layer process
 - Improved Mellor-Yamada Level3 scheme
- Radiation
 - Short and long radiation are calculated every 15 minutes

Development of a New Dynamical Core

Motivation

•The JMANHM has been used since 1990's.

•Well tested and checked but ...

•We need

•Higher accuracy

Accurate mass conservation

•Higher computational stability

Monotonicity in advection

•Higher efficiency

Less data communication

•Suitable to the current computer architecture

•Reconstruction of the model program

•We are developing a new dynamical core, named "asuca".

Comparison of dynamical core between JMANHM and asuca

	asuca	JMANHM
Governing equations	Flux form	Quasi flux form
	fully compressible equations	fully compressible equations
Prognostic variables	ρu, ρv, ρw, ρθ, ρ	ρu, ρv, ρw, θ, p
Spatial discretization	Finite volume method	Finite diffence method
Time integration	Runge-Kutta 3rd (long and short)	Leapflog with time filter (long)
		Forward backward (short)
Treatment of sound	Split explicit	Split explicit
Advection	Flux limiter function by Koren	4th (hor.) and 2nd (ver.) order
		with advection correction
Coordinate	Generalized coordinate	Conformal mapping (hor.)
		Hybrid – Z (ver.)
Grid	Arakawa-C (hor.)	Arakawa-C (hor.)
	Lorentz (ver.)	Lorentz (ver.)
Correction scheme	unnecessary	necessary but omitted
to conserve mass		

$$\begin{split} \frac{\partial(\rho u^{i})}{\partial t} + \nabla_{j} \cdot (\rho u^{i} u^{j}) + (\nabla p)^{i} + \rho g \delta_{3}^{i} &= F_{u^{i}} \\ \frac{\partial \rho \theta}{\partial t} + \nabla_{i} \cdot (\rho \theta u^{i}) &= F_{\theta} \\ \frac{\partial \rho}{\partial t} + \nabla_{i} \cdot (\rho u^{i}) &= 0 \\ p &= p_{0} \left(\frac{R \rho \theta}{p_{0}}\right)^{\frac{C_{p}}{C_{v}}} & \text{asuca's equations} \\ \rho \text{ is a prognostic variable.} \end{split}$$

$$\begin{split} &\frac{\partial(\rho u^{i})}{\partial t} + \nabla_{j} \cdot (\rho u^{i} u^{j}) + (\nabla p)^{i} + \rho g \delta_{3}^{i} = F_{u^{i}} \\ &\frac{\partial \theta}{\partial t} + \frac{1}{\rho} \left\{ \nabla_{i} (\rho u^{i} \theta) - \theta \nabla_{i} (\rho u^{i}) \right\} = F_{\theta} \\ &\frac{\partial p}{\partial t} = C_{s}^{2} \left(-\nabla_{i} \cdot (\rho u^{i}) + \frac{\rho \partial \theta}{\theta \partial t} \right) \\ &\rho = \frac{p_{0}}{R\theta} \left(\frac{p}{p_{0}} \right)^{\frac{C_{v}}{Cp}} & \text{JMANHM's equations} \\ &\rho \text{ is not a prognostic variable} \end{split}$$

Basic equations

Asuca employs density as a prognostic variable to assure mass conservation.

Mountain wave experiment (2D)

Brunt Baisala frequency = 0.02, U = 10m/s, dx = 1000m, dz = 250m

Number of grid points : 63 (hor.) x 48 (ver.)

asuca, dt = 60s. dynamical core + turbulence scheme JMANHM, dt = 20s. dynamical core + turbulence scheme

Density current experiment

Based on Straka et al. (1993)

Initial state

background : neutral layer (potential temperature = 300K) perturbation : max perturbation = -15K at centre, z=3000m

Comparison of advection scheme

