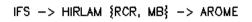
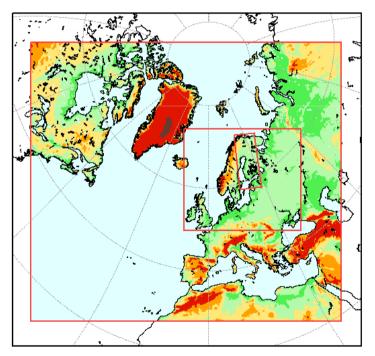


SRNWP@FMI

31st EWGLAM and 16th SRNWP meetings 28th Sept. -1st Oct. 2009 Glyfada


Carl Fortelius and the NWP team



Numerical weather prediction systems

- IFS (ECMWF)
 - Synoptic scale medum-range and long-range
 - LBCs for in house LAMS
- HIRLAM Forecasting System
 - Short-range
 - Down-stream applications
 - LBCs for high-resolution LAMs
- HARMONIE Forecasting System
 - High-resolution short range
- LAPS analysis system
 - Frequent meso-scale analyses
 - Expermental

Details of HFS version 7.2

Analysis		Forecast model	
Upper air analysis	4-dimensional variational data assimilation	Forecast model	Limited area grid point model
Version	HIRLAM 7.2	Version	HIRLAM 7.2
Parameters	surface pressure, wind components, temperature, specific humidity	Basic equations	Primitive equations
Horizontal grid length	0.15 degrees on rotated lat-lon grid	Independent variables	longitude, latitude, hybrid level, time
Domain	582 x 448 grid points	Dependent variables	log. of surface pressure, temperature, wind components
Levels	60 hybrid levels		sp. humidity, sp. cloud condensate, turbulent kinetic energy
Observation types	TEMP, PILOT, SYNOP, SHIP, BUOY, AIREP,	Horizontal grid	Arakawa-C
	ATOVS AMSU-A brightness temperatures	Horizontal grid length	0.15 degrees on rotated lat-lon grid
Background	3 h forecast from previous cycle	Integration domain	582 x 448 grid points
Assimilation window	6 hours	Levels	60 hybrid levels
Observation windows	1 hour	Integration scheme	Semi-Lagrangean semi-implicit, time step 360 s.
Data cut-off time	2 h for main cycles, 4 h 20 min for intermediate cycles	Orography	Hirlam physiographic data base, filtered
Assimilation cycle	6 h cycle, reanalysis step every 6 h to blend with large-scale	Physics	* Savijäravi radiation scheme
	features of the ECMWF analysis.		* Turbulence based on turbulent kinetic energy
Surface analysis	Separate analysis, consistent with the mosaic approach of the		* Rasch-Kristjansson condensation scheme
	surface/soil treatment		* Kain-Fritsch convection scheme
	* sea surface temperature, fraction of ice		* Surface fluxes according to drag formulation
	* snow depth		* Surface and soil processes using mosaic approach
	* screen level temperature and humidity	Horizontal diffusion	Implicit fourth order
	* soil temperature and moisture in two layers	Forecast length	54 hours
		Output frequency	Hourly
		Boundaries	* "Frame" boundaries from the ECMWF optional BC runs

The HARMONIE Forecasting System

- AROME cycle cy33h1, http://www.cnrm.meteo.fr/arome/
- Initial state and LBCs: HIRLAM MB
- 24 hour forecasts initialized at 00 and 12 UTC
- 300x600 grid points, distance 2.5 km
- 40 levels
- Output every 15 minutes
- Post porcessing includes a radar reflectivity simulator and comparison whith measurments in real time

The Finnish Wind Atlas

- Monthly fine-resolution wind climatology for Finland
- Multi-decadal climatology estimated by 48 representative months
- Massive meso-scale modelling (AROME)
- Commissioned by the Ministry for employment and economy
- Partners: FMI, Danish Technical University, VAISALA
- Link:

http://www.winterwind.se/Winterwind2008/P14_Tammelin_Winterwind_2008.pdf