

## MEDITERRANEAN SEA FORECASTING USING COSMO-ME (NETTUNO)

(in collaboration with ISMAR-CNR)

Lat lon regular grid (3')

Spectral discretization with 30

frequencies and 36 directions

Initial state from previous run

Initial time of model run 00/12

- UTC
- Forecast range to 72 h

OUTPUT: Significant wave height, Mean wave direction, mean wave period



Surface winds from COSMO-ME are used as atmospheric forcing in WAM 4.0 model (Komen et al, 1994)

## FUTURE DEVELOPMENTS

 Run at higher resolution (1') over the Italian basins with atmosferic forcing from COSMO-IT surface winds and boundary condition from run over Mediterranean sea Relocatable SWAN (Italian coast) for extreme events forecast over small domains CU.G.M. (In cooperation with CUGRI Salerno)

## THE ENSEMBLE BASED DATA ASSIMILATION SYSTEM: TOWARDS THE OPERATIONAL CONFIGURATION

## **CNMCA** Implementation

Bonavita et al., Q.J.R.Meteorol.Soc. 134, 2008

- LETKF FORMULATION (Hunt et al, 2007)
- 30 ensemble members at 0.25° (~28Km) grid spacing (EURO-HRM), 40 hybrid psigma vertical levels (top at 10 hPa)
- Boundary conditions from IFS for all members (not perturbed)
- LOCALIZATION: 800 km circular local patches (observation weight smoothly decay  $\propto r^{-1}$
- (T,u,v,qv,ps) set of control variables
- Observations: RAOB (Tuv), SYNOP(ps), SHIP(ps), BUOY(ps), AIREP, AMDAR, ACAR, AMV, MODIS, WPROF
- Model error treated through a combination of 3D adaptive multiplicative inflation factor and additive inflation factor (perturbation derived from randomly selected, scaled 24-hour forecast differences)
- 6-hourly assimilation cycle

Run for 30 days (1-30° Nov 2007) - Operational 3DVar cycle run in parallel at same spatial resolution and same observation dataset



Assimilation of radiances from AMSU-A
Perturbation of boundary conditions

uncertainties