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Outline

� (Ultra-)high resolution T3999 simulations highlight  some 
areas of concern:

� The spectral transform method� The spectral transform method

� Cost of the NH dynamics

� NH dynamics coupling to the physics
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Computational Cost at TL2047
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Cost of spectral transform method
� The Fourier transform can be computed at a cost of  C*N*log(N) where C 

is a small positive number and N is the cut-off wav e number in the 

triangular truncation with the Fast Fourier Transfo rm (FFT).

� Ordinary Legendre transform is O(N2) but can be combined with the 

fields/levels such that the arising matrix-matrix m ultiplies make use of 

the highly optimized BLAS routine DGEMM.

� But overall cost of transforms is O(N3) for both memory and CPU time 

requirements.

� On top of the computational cost there is also the cost of message 

passing associated with the “transpositions” but li kely O(N2)
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passing associated with the “transpositions” but li kely O(N2)

Desire for a fast Legendre transform where the cost 
is proportional to C*N*log(N) 
and thus overall cost proportional to N2*log(N) 



Schematic description of the spectral transform 

method in the ECMWF IFS model

Grid-point space
-semi-Lagrangian advection
-physical parametrizations
-products of termsFFT Inverse FFT-products of terms

Fourier space

Spectral space

FFT

LT

Inverse FFT

Inverse LT

Fourier space

No grid-staggering of 
prognostic variables
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Spectral space
-horizontal gradients
-semi-implicit calculations 
-horizontal diffusion

FFT: Fast Fourier Transform,  LT: Legendre Transform



Transpositions 

within the spectral 

transforms
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Timings for new Legendre transform

Control
First implementation
Opt 1 GMOpt 1 GM
Opt 2 GM
Opt 3 GM
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Accuracy of computation of the 

associated Legendre polynomials

� Increase of error due to recurrence formulae (Belou sov, 
1962)

� Recent changes to transform package went into cycle  35r3 � Recent changes to transform package went into cycle  35r3 
that allow the computation of Legendre functions an d 
Gaussian latitudes in double precision following 
(Schwarztrauber, 2002) and increased accuracy 10 -13 instead 
of 10 -12.

� Note: the increased accuracy leads in the “ Courtier and 
Naughton (1994) procedure for the reduced Gaussian grid” 
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Naughton (1994) procedure for the reduced Gaussian grid” 
to slightly more points near the poles for all reso lutions.

� Note: At resolutions > T3999 above procedure needs review !



Computational Cost at TL3999

hydrostatic vs. non-hydrostatic IFS

GP_DYN
SP_DYN
TRANS
Physics
other
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The IFS NH equations
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Two new prognostic variables in the 

nonhydrostatic formulation

‘Nonhydrostatic
pressure departure’

‘vertical divergence’‘vertical divergence’

With residual residual

Define also:
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Three-dimensional divergence writes



NH-IFS prognostic equations

‘Physics’
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“anelastic physics coupling”



The case of constant heating near the surface with dt=10s

physics

“Compressible”

Dynamics – Physics coupling Sylvie Malardel

dynamics

total

physics

“Anelastic”
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Total temperature tendency after 
15min is nearly identical !



Dynamics – Physics coupling

� (A) In the “anelastic coupling case” the nonhydrostat ic 
pressure departure is instantaneously converted int o volume 
change (D3) without the ("resolved") computations o f the 
dynamics.dynamics.

� (B) In the “compressible coupling case” the physics i s 
allowed to change the non-hydrostatic pressure depa rture, 
but cannot change the mass distribution. The mass 
rearrangement can be done only in the dynamics (via  
advection).
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advection).

���� Preliminary results suggest that (A) is more stable  with large 
time-steps and the need to retain fully compressibl e dynamics 
for cloud-resolving simulations is questionable !



Towards a unified hydrostatic-anelastic 

system

� Scientifically, the benefit of having a prognostic equation 
for non-hydrostatic pressure departure is unclear.

� The existence of two reference states with differen t � The existence of two reference states with differen t 
requirements undesirable.

� The coupling to the physics is ambiguous.

� For stability reasons, the NH system requires at le ast one 
iteration, which essentially doubles the number of spectral 
transforms.
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� Given the cost of the spectral transforms, any redu ction in 
the number of prognostic variables will save costs.

� Split-explicit (vertically implicit) schemes essent ially damp 
the pressure perturbation towards the anelastic sol ution. 



Towards a unified hydrostatic-anelastic 

system
� There is a recent enhancement of the validity of an elastic 

models (based on scale analysis) to temperature 
perturbations of 30-50K which substantially extends  the 
original work by Ogura and Philipps (Klein et al, 2010)original work by Ogura and Philipps (Klein et al, 2010)
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Unified system

(Arakawa and Konor, 2009)
here in the context of IFS
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qx = (p-π)/π



The linear system
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Describes the small deviation from a hydrostatically balanced, 
isothermal, and resting reference state.



Unified system – the linear system

The structure equation is identical to the Lipps and Hemler system, 
or in other words, small perturbations from a hydrostatically balanced 
reference state show the same behaviour in EULAG and the unified 
system ! (and with Coriolis only small difference for baroclinic modes.)

At large scales the unified system collapses to the existing 
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At large scales the unified system collapses to the existing 
hydrostatic system.

There may be a remaining concern for high altitude wave-breaking 
in the stratosphere (U. Achatz + Klein et al, 2010)



Executive Summary

� For the hydrostatic model not too many worries unti l 2015 ! 

� Nonhydrostatic IFS: Computational cost (almost 3 x at 
TL3999)  is a serious issue !

� Progress in the application of Fast Legendre Transf orms.� Progress in the application of Fast Legendre Transf orms.

� “anelastic” Dynamics-Physics coupling more stable wit h 
large time-steps and leading to the same result.

� Exploring possibilities towards a unified IFS hydro static-
anelastic system ( Arakawa and Konor, 2009).
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Additional slides
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Horizontal discretisation of variable X (e.g. temperature)
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using
NF ≥ 2N+1
points (linear grid)
(3N+1 if quadratic grid)
“fast” algorithm available …

by Gaussian quadrature
using NL ≥ (2N+1)/2
“Gaussian” latitudes (linear grid)
((3N+1)/2 if quadratic grid)
“fast” algorithm desirable …

Triangular truncation:

m

n
N

m = -N m = N


