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Overview

¢ The current operational cycle CY36R2

¢ Data assimilation and EPS developments

¢ (Ultra-)high resolution global simulations with IFS
¢ New prognostic cloud microphysics

¢ Revision of topographic fields

¢ Fast Legendre transforms

¢ Some technical developments of interest
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The current operational cycle 36r2

¢ Forecast/Assimilation system T1279 L91 (analysis in  ner
loops with T159/T255/T255)

¢ EPS system T639 (10days)/T319(7days) + revised
representation of uncertainty

¢ Ensemble of Data Assimilations (EDA) T399 L91 (anal ysis
Inner loops T95/T159)
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Data assimilation

¢ Ensemble of data assimilations (EDA) (to provide fl  ow-
dependent error variances to 4D-Var and inputto EP  S).

¢ Long window weak constraint 4D -Var (to account for model
error and exploit additional parallelism).

¢ Ensemble Kalman Filter (EnKF) to explore alternativ. = e
options for scalability and usefulness in the conte Xt of
reduced availability of observations.
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Ensemble of Data Assimilations (EDA)

¢ Control + 10 ensemble members using 4D-Var
assimilations

¢ T399 outer loop

¢ T95/T159 inner loop (reduced number of iterations)
¢ Model error

¢ Stochastically Perturbed Parametrization Tendencies

¢ Randomly perturbed observations and SST fields
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Example of flow-dependent (filtered)

ensemble spread
(without filtering noisy with only 10 ensemble members)

Lars Isaksen
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Reasons for Ensemble of Data Assimilations

¢ To improve the initial perturbations in the Ensembl e Prediction
¢ To estimate analysis uncertainty
¢ To calculate static and seasonal background error s tatistics

¢ To estimate flow-dependent background error in 4D-V  ar -
“‘errors-of-the-day” (expected operational late 2010)

¢ To improve QC decisions and improve the use of obse rvations
In 4D-Var (expected operational late 2010)
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EPS representation of uncertainty

¢ Initial uncertainty using perturbations from the en semble of
data assimilations (EDA) in addition to perturbatio ns based
on singular vectors (SVs)

¢ Subgrid-scale uncertainty: Stochastically perturbed
parametrization tendency scheme (SPPT) (temporal and
spatial randomization)
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spread-reliability and SV perturbation
amplitude

Z500, N-Hem Mid-latitudes, 21 cases in Oct—Dec 2009

(EDA+init. SVs+ spptl, 1639, cycle 36r2)
(a) 24 h (b) 48 h
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Metres

ENKF: Surface pressure data only
comparison with control analysis
Mats Hamrud

= 4D-Var (equw) === ENKF EnSRF (fedq) == ENKF LETKF (fee2)
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Computational cost of 4D-Var

Mats Hamrud
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Scaling of 4D-Var Mats Hamrud
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History of resolution changes

¢ Resolution increases of the deterministic 10-day me  dium-range
Integrated F_orecast S ystem (IFS) over ~25 years at ECMWEF:

¢ 1987: T 106 (~125km)
¢ 1991: T 213 (~63km)

¢ 1998: T,319 (~63km)

¢ 2000: T, 511 (~39km)

¢ 2006: T, 799 (~25km)

¢ 2010: T, 1279 (~16km)
¢ 20157?: T, 2047 (~10km)

¢ 2020-??7?: (~1-10km) Non-hydrostatic, cloud-permitting, substa n-
tially different cloud-microphysics and turbulence parametrization,
substantially different dynamics-physics interactio n?
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The Athena Project: Experimental Setup

¢ IFS (latest cycle 36r1) atmosphere-only runs withp  rescribed lower
boundary conditions (SST data from observations unt 11 2007, 2070- A1B
scenario SST forcing comes from CCSM simulation)

¢ Four different horizontal resolutions:
¢ T,159L91 ( ~125 km)
¢ T,511L91 (~ 39 km)
¢ T,1279L91 ( ~16 km)
¢ T,2047L91 ( ~10 km)
¢ Two different setups
¢ Set of 13-months long integrations (1960-2007)
¢ T,1279 and T,159 AMIP long runs (1960-2007 and 2070-2117)
ECMWF &5



Athena project: Blocking Frequency
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Better representation of orography important factor !
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a) Held-Suarez: T2047-T159

Increasingly
colder
stratospheric
temperature
with increased
horizontal
resolution
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Ultra-high resolution global IFS simulations

¢ T,0159 (~ 125km) >> 35,718 points per field/le vel
¢ T,0511 (~ 39km) >> 348,528 points per field/le vel
¢ T,0799 (~ 25km)>> 843,490 points per field/le vel
¢ T,1279 (~ 16km) >> 2,140,702 points per field/lev el
¢ T,2047 (~ 10km) >> 5,447,118 points per field/lev el

¢ T,3999 (~ 5km)>> 20,696,844 points per field/lev el (world
record for spectral model ?!)
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Orography T1279
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Orography T3999
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Cloud cover 24h forecast T3999 (~5km)

a Non-hydrostatic simulation b Hydrostatic simulation

EOGN e

Era-Interim shows a wind shear with height in the
troposphere over the region!
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Kinetic Energy 6
Spectra (10hPa) :
T3999 - T1279
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Kinetic Energy 6
Spectra (500hPa) -
T3999 - T1279
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New prognostic microphysics scheme

Scheme description

Current Cloud Scheme
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0, Rain/Snow

Richard Forbes

New Cloud Scheme

Deposition-Evaporation N WATER ] Deposition-Evaporation
(PREVP) VAPOR | (PSEVP)

Condensation-Evaporation Deposition-Sublimation
(PCOND) (PSUB)

Freezing-Melting-Bergeron
(PSMLTI-PBERG)

CLOUD
FRACTION

Autoconversion (PRAUT) Collection Autoconversion (PSAUT)
Collection (PRACW) (PSACW) Collection (PSACI)

| Freezing-Melting |
_ >
RAIN (PSMLTS) SNOW

» 2 prognostic cloud variables + w.v.

 |[ce/water is a diagnostic function of
temperature (0C to -23C)

Diagnostic precipitation (rain/snow)
EWGLAM/SRNWP 2010 Slide 24

» 5 prognostic cloud variables + water vapour

Ice and water now independent in mixed
phase temperature regime

Prognostic (advected) precipitation




New prognostic microphysics scheme SSECMWF
Example: IWC vs. Temperature

Relative frequency of occurrence of ice/snow for N. Hem. mid-latitudes June 2006

CloudSat/CALIPSO

observations ECMWEF old scheme ECMWF new
(Delanoé and Hogan, 2010) without snow scheme with snow % of
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New scheme with prognostic ice in mixed-phase and prognostic snow precipitation
allows much higher ice water contents (seen by the radiation scheme)
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New: www
IFS Model climate
publicly accessible

} Model climate - Mozilla Firefox
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Two sets of integrations (diagnostic packages) are used, (i) an ensemble of 12
monthe integrations for assessing in detail the mode| physics/climate against
observations, and (ii) separate multi-year winter and summer experiments to evaluate the
models statistics on inter annual and synoptic scales. All integrations are run in
uncoupled mode, i.e. with analysed sea surface temperatures.

The 12 months integrations for 2000/2001 are compared with GPCP, TRMM, SSMI,
ERA40, ERBE, CIRES, DaSilva climatology using a guick-run diagnostic package
developed by the Physics Section. The standard resolution is T159_L91 The ensemble
consists of 4 members, shifted each by 1 day and 6 hours in order to properly sample
the diurnal cycle. The default model time steps are T159 = 3600s, T255 = 2700s, T511 =
900s,

Changes in setup: (i) before CY29R1 the resolution was T95_L80, (ii) from cycle CY33R1
onward the verification is done against the ERAI {Interim) and not anymore against
ERAA40 , only the climatelogical verification is still done gainst ERA40, (iii) for cycles after
CY38R4 the standard initialisation will be from the ERA-Interim 91 levels and not from the
ERA40 80 levels.

The 15 year 5 months integrations run from 1990 to 2005 at resolution T159_L91 with
a default model| time step of 3600s. The extended climate package package has been
developed by the Diagnostics Section and aims mainly to describe mean flow

conditions and synoptic activity in midlatitudes and Tropics against ERA40, but
comparisons with GPCP and SSM| are also included.

Note that model cycle CY24R1 (June 2001) corresponds to the ERA40 and CY31R1
(September 2006) to the ERA-Interim, and that C¥31R1 is used by the Seasonal
Forecast System 3 (T159 L62), and cycle CY36R4 by the Seasonal Forecast System 4
(T255_L91)

Last update 15 September 2010

httpiffwww.ecmwf.int/productsforecasts/dfinspectfcatalog/research/era/

[4]




| mprovementsin Precipitation climatology in the last
10-Year s Precipitation for 2000/2001 against GPCP

Cy36R4=System 4 Cy33R1

Difference ffhf- GPCP2.1 error 0.218 EMS 0.959 Difference fOwp - GPGP error 0.31 RMS 1.11

s
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Cy31R1=ERAI=System 3 Cy24R1=ERA40
Difference eslu- GPCP ernr 0.33 RMS 1.27 Difference =i8x - GPCP error 0.342 RMS 1.88
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Revision of high-resolution topographic fields

¢ Globe

¢ SRTM30

¢ Modis Mosaic of Antarctica (MOA)

¢ Globcover

¢ Global Land Cover Characteristics (GLCC)
¢ Harmonised World Soil Database (HWSD)
¢ Modis surface albedos

-> Create a database of grib-files at 1km from whicht  he
operational resolutions are consistently derived.

-> Input to the computation of subgrid-scale parameter S.
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Comparing GLCC and Globcover

km grid for a

¢ Left picture is GLCC, right Globcover, both on a 1

Norway.
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Comparison of Ism/lake mask from existing and
new

Geir Austad
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Computational Cost at T, 2047 and T,3999
(with the hydrostatic IFS)

B GP_DYN
B SP DYN
B TRANS
B Physics
& other

H T, 2047 H T,3999
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Cost of spectral transform method
¢ The Fourier transform can be computed at a cost of C*N*log(N) where C
IS a small positive number and N is the cut-off wav e number in the
triangular truncation with the Fast Fourier Transfo rm (FFT).

¢ Ordinary Legendre transform is  O(N?) but can be combined with the
fields/levels such that the arising matrix-matrix m ultiplies make use of
the highly optimized BLAS routine DGEMM.

¢ But overall cost of transformsis ~ O(N?) for both memory and CPU time
reguirements.

¢ On top of the computational cost there is also the cost of message
passing associated with the “transpositions” but li kely O(N?)

Desire for a fast L egendre transform where the cost

Is proportional to C*N*log(N)
and thus overall cost proportional to N?*[og(N)

ECMWF £3



Total number of operations (24h forecast)

Inverse Legendre transform

u | | -

1500 N

- |— control i

- |— fast Legendre transform :
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- | L]

799 1279 2048

Spectral resolution
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Other technical developments

¢ OOPS project and IFS code cleaning and modularisati  on

¢ IFS can be build with free tools and libraries usin ¢
gfortran_v4.5

¢ GRIB_API - GRIB2 (also in preparation of increase of
vertical levels to approximately 140 levels nextye  ar)

¢ Metview 4 released
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BC project review

¢ ECMWF committed to provide quality boundary conditi ons
to regional forecast, data assimilation and EPS app  lications

¢ Main points suggested by the TAC subgroup:
¢ Hourly boundary conditions

¢ Alternative timeliness scheduling needs further
research

¢ Possibility of BCs for LAM EPSs considered

¢ Special topic BCs in LAMs user group workshop hoste d
at ECMWF within the next 18 months

¢ Regular review (every 2-3 years) of BC requirements  for
the member states as these evolve
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Additional slides
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Example of ensemble spread that is flow
dependent (without filtering noisy with only 10

ensemble members)
Vorticity at 500 hPa, +9h
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Quasi two-dimensional orographic flow
with linear vertical shear
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horizontal (NH) and the (incorrect)

vertical (H) propagation of gravi
waves In this case (Keller, 1994).
Shown is vertical velocity.

1— AT YYYYYYEEO (Wedi and Smolarkiewicz, 2009)
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