

Review of verification activities and developments

Clive Wilson – Expert Team on diagnostics, validation & verification

32nd EWGLAM/17th SRNWP meetings – Exeter 4-7 October 2010

© Crown copyright Met Office

- Consortia activities
 - COSMO see Marco's talk in tomorrow's session
 - Hirlam
 - Met Office Identifying the "best" forecast see talk tomorrow
 - IMWM filters- Marek Jerczinski
- ECMWF TAC Subgroup on verification
 - SEEPS precipitation score
- SRNWP-V programme

monitoring facility

Common tool, central collection & maintenance

- Monitoring data from operational & real time suites
- Full access to HIRLAM/ALADIN • community
- **Observation verification**
- Monitoring and statistics of data assimilation
- Diagnosis and statistics of daily • operational runs
- Mast data verification
- - -
- Latest development: inter-• comparison of forecast charts

Operational HIRLAM Monitoring and Inter-comparison

Operational Hirlam Forecasts based on initial time

- Selected operational forecasts during the last 10 days o
 → RCR area o
 → Nordic area Spain/France area • 🖙 surface analysis. snow depth, sst and ice cover Currently featured forecasts at 00 and 12 UTC FMI: RCR (Reference HIRLAM with 7.2), MB71, V7.3rc1 DMI: M09 MetEireann: ICH ECMWF DMI main forecast maps FMI RCR forecast maps Operational Hirlam Forecasts based on valid time Selected operational forecasts during the last 10 days o ⇔ RCR area o
 Nordic area o
 → Spain/France area o ⇒ West Europe o Currently featured forecasts at 00 and 12 UTC FMI: RCR (Reference HIRLAM with 7.2), MB71, V7.3rc1 DMI: M09 MetEireann: ICH ECMWE Observation Verification Inter-comparison
 - B Real-Time Observation Verification Intercomparison of Operational HIRLAM o Operational HIRLAM models: ⇒ Multi-center, ⇒ AEMET ,⇒ DMI (T15, S05, G05), ⇒ EMHI (ETA, ETB), ⇒ FMI (RCR),⇒ KNMI, ⇒ LHMS,⇒ M
 - o Harmonie vs Hirlam models: ↔ Real time suites: RCR_H vs RCR_E and RCR
 - General Information about method, algorithm and tools
 - General Info.
 Werification data and method

Observation Verification at Operational Services

- DMI HIRLAM verification
- FMI AROME monitoring
- SMHI ALARO monitoring

Monitoring and statistics of the data assimilation system

Participating service: AEMET, DMI, EMHI, FMI, LHMS, KNMI, met.ie, met.no, SMHI

- Daily use of observations in operational services
- o Please be aware that, data usage plot for those using 4D-VAR analysis has hourly map; these includes FMI-RCR, SMHI-C22, TOON22
- FMI analysis monitoring interface 🔹 🖙 DMI analysis monitoring: interface

Diagnosis and statistics of daily operational runs

Participating service: AEMET, DMI, EMHI, FMI, LHMS, KNMI, metie, metno, SMHI

Chart inter-comparison:

On-line mast intercomparison facility

Forecast verification in real-time

- http://fminwp.fmi.fi/mastverifnew (password protected)
- Towers and masts
 - Sodankylä, Cabauw, Valladolid, Lindenberg, Kivenlahti, Kuopio, Rovaniemi
- Models
 - HIRLAM, AROME, ALADIN, ARPEGE, IFS (latest)
- Parameters
 - Screen temperature and relative humidity, 10-m wind speed, T at lowest model level
 - Surface radiative and turbulent heat fluxes
 - Surface momentum flux
- Participation
 - More mast and model data welcome!
 - Contact: Markku.Kangas at fmi.fi

Obs. verification example:

•SAL verification of simulated vs. observed radar reflectivity

•FMI AROME

•June 2010

•Southern Finland

•AROME cy33h1, 2.5 km/L40

•Diurnal variation in SAL:

•Afternoon patterns too weak in amplitude and too small or too peaked ("missing events")

•Morning patterns slightly large or flat

•Latest: gauge data (C. Santos, AEMET)

Morning (4-9 am LT)

Afternoon (4-9 pm LT)

SAL work AEMET-ECMWF

- Development
 - F77 code provided by Paulat and Zimmer (DWD)
 Location
 - F95 code by Guerrero & Santos (AEMET)
- Studies
 - AEMET: 2009 Spain; HIRLAM (5km), HIRLAM (16km), T799 (25km)
 - AEMET-ECMWF collaboration (A. Ghelli): 2008 Central Europe; T799 (25km), T399 cf (50km)
- Results look promising
 - Fair assessment for higher-resolution models

- SAL c Object-oriented
 - Wernli and Paulat, 2004
 - avoid classical verification problems (e.g. Double Penalty)
 - quantitative & detailed information
 - different aspects QPF performance

Compare mod-obs

- Up-scale pcp obs field
- Objects \leftarrow simple algorithm
- Components (0=perfect) \rightarrow SAL plot
 - Structure X [-2,2]
 - Amplitude
- Y [-2,2] color [0,2]

Comparison of model vs satellite retrieval

•DMI (K. P. Nielsen): comparison on cloud physical property

•Total cloud condensate

- Upper left:
 HARMONIE
- Lower left: MSG
- Upper right: difference
- Lower right: MSG effective cloud drop radii

Harmonie - MSG CLWP difference [kg m⁻²]

MSG cloud drop effective radius [µm] (from CLWP and COT)

2-D ICWM Filters Marek Jerczynski

- Scale-separation tool for non smooth meteorological fields on regular grids
 - filters: Iterative Four Directional Composite Weighted Median Filters.
- 2-D ICWM filters
 - superpositions of 1-D weighted median filters
 - different sizes & weights in iterative smoothing in consecutive directions
 - Such 2-D filters have interesting features
 - robustness and idempotence

Precipitation field filtering

2 - D ICWM filter with two-parameter

- images are normalized
- precipitation boundary well preserved

ECMWF TAC subgroup on verificationfinal recommendations for headline measures

- 500hPA ACC (deterministic) and 850Temp CRPSS (EPS)
 - against analyses, extra-tropics, new climatology (ERA-I 1989-2008)
- Recommends 4 subsidiary scores
 - <u>SEEPS</u> 24h precipitation extra-tropics (deterministic)
 - Tropical cyclone position error (deterministic)
 - EFI 10m wind (EPS)
 - CRPSS for daily precipitation extra-tropics (EPS)

SEEPS=Stable Equitable Error in Probability Space Rodwell et al, 2010, QJRMS 136

- Dry, light , heavy based on observed climatology (24h) at station – p₁ , p₂ , p₃
- Contingency table probabilities based on these categories
- Scoring matrix stable, equitable
 - SEEPS=0 (perfect) , =1 (no skill
 , eg constant)
- Now applying to 6h accumulations in SRNWP-V
 - 6h climatology (courtesy Mark Rodwell)

SRNWP-V Programme

© Crown copyright Met Office