

Volcanic ash forecasting and warning experiences at the Met

- NAME model overview
- Eyjafjallajökull
 - VAAC
 - NAME setup
 - Forecast verification
 - Ongoing work
- Close

Numerical Atmospheric Dispersion Modelling Environment

- NAME Lagrangian dispersion model
- Development started following the Chernobyl accident to give emergency response dispersion predictions for nuclear incidents
- NAME has been and continues to be under constant development
- Used by 5 universities, 5 UK government agencies and SAWS
- Model now has much wider range of physics and functionality
- Applications:
 - VAAC, industrial releases/accidents, radiological incidents, CBRN
 - Source inversion
 - Animal disease spread
 - Air quality, forest fires

Sources:

- Any number of independent sources and pollutants
- Source Shape: point, line, 2d plane, volume
- Instantaneous, time bound or time varying
- Gases and particulates
- User defined particle size distribution & density
- Stable or reactive chemical and radiological

Processes:

- Wet and dry deposition
- Sedimentation
- Radioactive decay, decay products, cloud gamma
- Environmental effects on biological and other substance
- Chemical transformations

Meteorological Data

- Numerical Weather Prediction (NWP) data
 - UM Global, NAE, UK, ensemble + ECMWF deterministic and ensemble
 - Model level data used
 - Data typically hourly or 3 hourly
 - 31 physical parameters e.g., velocity, temperature, pressure, cloud, precipitation, etc
- Radar rainfall data
- Embedded flow models e.g. for buildings or hills
- All 'met' data sets can be nested spatially ulletand temporally
- Pick best data for the job
 - High resolution limited area not always the best

VAAC Volcanic Ash Advisory Centre

- 1986 International Airways Volcano Watch instituted by International Civil Aviation Organisation (ICAO)
- Volcanic Ash Advisory Centres designated by ICAO and World Meteorological Organisation
- Role of VAAC ICAO Annex 3:
 - Production of advisories detailing the spatial dispersion of VA
 - Running (and/or utilisation of output from) NWP dispersion models
 - Monitoring of observational data, especially satellite imagery for the presence of VA.

Region not covered

VAAC Model Configuration

• Vertical line source

- Bottom: summit height; top: observed plume rise from IMO
- Uniform vertical ash distribution at source
- 6 bin particle size distribution $1 100\mu m$ (peak $10 30\mu m$)
- Ash density = 2300 g/m3
- 6 day spin up + 5 day forecast (ash age limited to 6 days)
- Global UM NWP data
- Sedimentation, wet + dry deposition

Emission rate and concentration threshold

- Initial aviation rules were "avoid ash"
 - 'VAFTAD' table used gives dilution for "area of ash" as function of plume rise height – stepped function
 - No attempt to estimate source strength or predict concentrations quantitatively

- On 19/4/10 rules changed to avoid concentrations above 2000 μg/m³ & enhanced procedures above 200 μg/m³, requiring quantitative predictions
 - VAFTAD table calibrated using Mastin et al's (2009) emission rate v. plume rise curve, making agreement best where VAFTAD is least conservative
 - Later replaced by smooth curve very close to Mastin et al (2009), Sparks (1997)

- Eruption mass estimated from empirical height to mass relationship
 - Considerable error bars reflecting differences in eruptions and meteorology
 - a ~50% chance of errors of $x/\div 3$
- Eruption height observation \pm 1km --> x10 mass
- Only model material smaller then 100 microns, but a significant fraction (~90% or more) of material is deposited close in due to
 - larger grains size
 - aggregation of smaller grains
- The plume is patchy and has thin high concentration layers which are not resolved by our model configuration
 - peak to mean concentrations can be ~10
- Small errors in position of narrow plumes can lead to large concentration errors

VA ADVISORY DTG: 20100414/1200Z VAAC: LONDON VOLCANO: EYJAFJALLAJOKULL PSN: N6338 W01937 AREA: ICELAND SUMMIT ELEV: 1666M ADVISORY NR: 2010/001 INFO SOURCE: ICELAND MET OFFICE AVIATION COLOUR CODE: UNKNOWN ERUPTION DETAILS: PLUME FROM VOLCANO REPORTED TO BE UP TO 6000M

Supplemental quantitative advisory from 16th May 2010

Red area: $c > 200 \text{ mg/m}^3$

Grey area: c > 2000 mg/m³

Black area: $c > 4000 \text{ mg/m}^3$

© Crown Copyright 2010. Source: Met Office

Model Verification

Model Comparisons 1200z on 10 May

Met Office

©С

70'W 60'W 50'W 40'W 30'W 20'W 10'W 0' 10'E 20'E 30'E 40'E 50'E 60'E 70'E 80'E 90'E

Comparison with observations

Met Office

- Ad hoc comparisons during event suggest • model predicts peaks within an order of magnitude
- Comprehensive post-event comparisons lacksquarenot yet complete

NAME dispersion model Development

- Evaluation against observations
- Model inter-comparisons
- Evaluation of both peak and mean concentration predictability
- Inclusion of other chemistry in VA plume
- Ensemble predictions
- Recommendations for operational implementation.

NAME dispersion model Development

- Improvements to definition of eruptive source term
- Analysis of historic eruptions/ash encounters
 - 6 eruptions 1985-2006, 21 encounters
- Evaluation of inversion modelling and data assimilation processes
- Climatological studies to better quantify risks
- Resuspension Air quality + airport operations

© Crown

- General performance very encouraging
- Source term data largest source of error
- Quantitative prediction
 - Comparisons with recent observations provides insight
 - However potential error bars remain large
 - Next eruption will require observations if errors to be constrained
- Relevant model physics, current and new, needs further evaluation and development
- Relevant NWP accuracy very important

