Physics in ARPEGE/ALADIN & AROME

> V. Masson <u>CNR</u>M, Météo-France

Contributors: Y. Seity, S. Riette, P. Santurette, Y. Bouteloup

Talk's Overview

ARPEGE/ALADIN Physics : what's new in 2010 ?

AROME : forecasters' point of view after 2 years

AROME physics: what's new in 2010

Developments on cloud physics

ARPEGE physics (since Feb 2009)

- Classical Shallow convection (Kain-Fritch-Bechtold)
 - Will be tested an EDMF approach next year
- TKE turbulence scheme
 - Much better results than the Louis scheme
- Deep convection (from Bougeault 1985)
- Microphysics with 4 prognostic species (Lopez)
- Radiation scheme (Morcrette in SW, RRTM in LW)
- Gravity wave drag (Geleyn)

- 70 vertical levels
- ~10km hor. Resolution over Europe

FEO FRANCE

Toujours un temps d'avance

GPCI : Gewex Pacific Cross-section Intercomparison

- Removal of the entrainment at Boundary Layer top
- Sedimentation of cloud dropplets (water & ice), new snowfall speed, rain freezing
- Modification of roughness length on orography (now only affects momentum)

Monthly scores over Europe

- New physics (especially TKE turbulence scheme and KFB shallow convection) improved the scores in the Boundary Layer as well as the precipitation scores
- Physics is not directly the reason why the synoptic scores improved
- But the new turbulence scheme allowed a smooth increase of vertical resolution

Talk's Overview

ARPEGE/ALADIN Physics : what's new in 2010 ?

- AROME : forecasters' point of view after 2 years
 - Xynthia wind storm
 - A few examples
 - Forecasters' scores & analysis

AROME physics: what's new in 2010

Developments on cloud physics

XYNTHIA storm : 27-28 February 2010

Rafale en km/h par krigeage - 27 et 28 fevrier 2010 seuils 95 100 105 km/h

- Dramatic flood on the West Coast
- And also intense gust winds in the Pyrenees

238 km/h at Pic du Midi Very strong winds in the valleys : 1 death in Luchon

Wind storm : Xynthia

- A lot of damage in all ski resorts
- On pics and high plateaus:
 - 238 km/h at 2880 m of alt.
 - 191 km/h at 2445 m of alt.
 - 167 km/h at 1600 m of alt.
- Also strong winds In valleys
 - 115 km/h measured

ténées. Les installations de certains sites ont beaucoup souffert, comme à utacam, qui restera fermé. Ailleurs, la vie reprend, et le ski qui va avec. **ES Stations pansent leurs plaies**

Gazost. Les habitants, choqués, découvrent l'ampleur des très importants dégâts.

Wind storm : Xynthia

- Before AROME, mountain Forecasters usually used their knowledge of mountain climatology
- The AROME grid-mesh (2.5km) should allow numerical forecast in mountaineaous areas
- For Wind storms, it should give pertinent information on
 - Gust Area,
 - Chronology of the storm,
 - Maximum winds

Forecasters are globally happy with the AROME forecast for Xynthia

Wind storm : Xynthia \rightarrow positive impact of NH

- The trapped waves are only reproduced with the non hydrostatic assumption.
- In Hydrostatic, wind in valleys is weaker (80 km/h instead of 120 km/h)

 \rightarrow Positive impact of the NON HYDROSTATISM

HYDROSTATIC

NON HYDROSTATIC

Convection

Case of the 5th June 2009

- AROME better localized for the strongest rainfall
- Better spatial structure
- But a few thunderstorms behind the front

Convection

Case of the 5th June 2009

Good simulation of the squall line

Convection

 \Rightarrow Convection starts and ends at the right time !

- \Rightarrow Convection : often shifted by 50 to 150km
- \Rightarrow Convection very well localized in the Alps

Fog : overview

Fog Base: 26 feb, 12h Forecast : 27 Feb, 8h Fog Base: 27 feb, 0h Forecast : 27 Feb, 8h

- For regional fogs: AROME is correct
- Locally, sometimes too much fog, linked to too few dew

Fog : details

Orography & Fog

- Fog in small valleys is not correct yet
- A small hill (400m) seems not to behave logically : AROME puts fog on it while it should be clear
 METEO FRANCE

Toujours un temps d'avance

Fog

 \Rightarrow No bias for the fog formation

 \Rightarrow Tends to dissipates fogs too early

Comparison between ALADIN-France and AROME

Comparison a posteriori, for each type of meteorological situation

AROME is globally better than ALADIN-France

- Very Good behaviour
 - Deep convection on orography
- Good behaviour
 - Deep convection in general
 - Wind storms
- To be improved
 - Boundary layer clouds
 - Fog
- Specific comments:
 - Beware to « details » : for example a forecaster should not overinterpret the position of a single thunderstorm (if not linked to orography)
 - AROME is globally better than ALADIN-France

Talk's Overview

ARPEGE/ALADIN Physics : what's new in 2010 ?

AROME : forecasters' point of view after 2 years

AROME physics: what's new in 2010 ?

Developments on cloud physics

AROME France v3 domain

 As requested by our forecasters, and thanks to added processors on our NEC SX9 : (will start this summer)

Domain 750x720 points

METEO FRANCE Toujours un temps d'avance

Performances : cf Ryad's talk

AROME France v3 domain

AROME France v3 content

- Assimilation
 - Surfex surface analysis (cf talk J-F Mahfouf)
 - More data assimilated :
 - additionnal IASI and AIREP data,
 - 7 more wind doppler radars
 - Better assimilation of radar reflectivities
- New diagnostics (PBL height, modelled satellite imagery using RTTOV)
- Modifications of orographic roughness length
- Code optimisation (for our EDMF scheme)

AROME France v3 content : new diagnostics

- Brightness temperature (IR 10.8 µm channel)
- Water vapor (WV 6.2 µm channel)

ARO FRANGP 2010050100+02 IRG10.8(K)

ARO FRANGP 2010050100+02 VAP6.2(K)

AROME France v3 content : new diagnostics

• These diagnostics are used during the forecast (e.g. to follow a cloud system, as here over the SW of France)

AROME France v3 scores

Surface scores (from 20 August to 13 September 2010) : AROME_v2, AROME_v3

—RMSE — — Bias

Talk's Overview

ARPEGE/ALADIN Physics : what's new in 2010 ?

AROME : forecasters' point of view after 2 years

• AROME physics: what's new in 2010?

- Developments on cloud physics
 - Hail
 - Boundary layer clouds

Hail: case of the 13 May 2010

OBSERVATIONS:

Hail: case of the 13 May 2010

OBSERVATIONS:

But... the 30 march 2010 case

- Tendency to over-estimate the occurrence of hail (especially small values)
- Therefore, prognostic hail is still a long-term development
- First step : building a diagnostic for hail

Low clouds variability

- Several scales of variability and processes for boundary layer clouds:
 - Turbulent motions (parameterized with ED schemes)
 - Shallow cumulus forces by BL thermals (with MassFlux scheme)
 - Mesoscale variability (e.g. gravity waves, humidity heterogeneity in nocturnal & residual boundary layer, orography, residual clouds from previous convection, etc...)

- Wim de Rooy formulae used for mesoscale cloud variability
 - The statistical cloud scheme uses: $Q = \frac{q_t q_{sat}}{Q}$
 - IT condensates for : $Q > Q_c$
 - If $\sigma_s = \alpha \times q_{sat}$
 - One will have condensation for :

 $Hu > Hu_c = Q_c \times \alpha + 1$

10th January 2010

0

Partial cloud cover is much better, Even if some clouds are still missing
near the coasts

13th May 2008

- The modifications allow to add clouds where they were the most missing
- Still too large cloud fractions for the shallow cumulus in the South

Impact on precipitations

Precipitation improved significantly for all rainrates

Perspectives

- To continue the evaluation of the Wim De Rooy term
- Improve cumulus scheme :
 - 2 New detrainment/entrainment (Wim De Rooy and Rio et al.) in clouds in our MassFlux scheme
 - New statistical cloud scheme (explicitely separating cumulus contribution)
- To validate the AROME clouds modifications against :
 - Surface downwards solar radiation
 - Cloud experiments databases
 - Satellite images

Conclusions

• ARPEGE/ALADIN Physics are now more similar to AROME's:

- Same radiation and turbulence
- Still some differences on shallow convection, surface, microphysics
- Next step : test of the AROME's EDMF approach

AROME is better than ALADIN-France

- Better rainfall : explicit deep convection
- Better resolution \rightarrow improved mesoscale processes (winds, breezes, fog)

New Developments on cloud physics

- Hail diagnostics
- Boundary layer clouds

The end

Thanks

