

The 'Conservative Dynamical Core' priority project and other current dynamics developments in the COSMO model

33rd EWGLAM and 18th SRNWP meeting 10-13 Oct. 2011, Tallinn, Estonia

<u>M. Baldauf</u>, U. Blahak (DWD, Germany) B. Rosa, M. Kurowski, M. Ziemianski (IMGW, Poland)

COSMO-Priority Project 'Conservative dynamical core'

Main goals:

- develop a dynamical core with at least conservation of mass, possibly also of energy and momentum
- better performance and stability in steep terrain
- 2 development branches:
- assess aerodynamical implicit Finite-Volume solvers (*Jameson, 1991*) P.L. Vitagliano (CIRA, Italy), L. Torrisi (CNMCA, Italy), M. Baldauf (DWD)
- assess dynamical core of EULAG (e.g. Grabowski, Smolarkiewicz, 2002) M. Ziemianski, M. Kurowski, B. Rosa, D. Wojcik (IMGW, Poland), O. Fuhrer (MeteoCH), M. Baldauf (DWD)
 - EULAG: anelastic approximated equations (Lipps, Hemler, 1982) MPDATA for advection, GMRES for elliptic solver non-oszillatory forward-in-time (NFT) integration scheme

Experiments involve a case study of summer Alpine convection on 12 July 2006.

Simplified parameterizations:

- Boundary layer processes are represented by a 1-eq. TKE (turbulent kinetic energy) model
- Surface fluxes and drag are taken from the operational run of the COSMO2 model for CH
- Simple representation of moist processes (warm rain Kessler-scheme)

Experiment setup:

- Horizontal resolution 1.1 km, vertical resolution as in COSMO2
- The computational domain is restricted to 234x198 km and covers the Southern Alps
- Initial, boundary conditions from COSMO2 operational run

Comparison of the EULAG simulation with satellite images

12:00 UTC

15:00 UTC

Temporal and spatial structure of the simulated convection in the EULAG experiment closely resembles the actual development

... now test the implementation of the EULAG dynamical core in COSMO

Skamarock W. C. and Klemp J. B. Efficiency and accuracy of Klemp-Wilhelmson time-splitting technique. *Mon. Wea. Rev.* **122**: 2623-2630, **1994**

Constant ambient flow within channel 300 km and 6000 km long

Initial velocity

$$u(t=0)=20m/s$$

v(t=0) = 0 m/s

w(t=0)=0 m/s

Initial potential temperature perturbation

$$\theta(x, z, t = 0) = \Delta \theta_0 \frac{\sin(\pi z / H)}{1 + (x - x_c)^2 / a^2}$$

Setup overview:

- domain size 300x10 km
- resolution 1x1km, 0.5x0.5 km, 0.25x0.25 km
- rigid free-slip b.c.
- periodic lateral boundaries
- constant horizontal flow 20m/s at inlet
- no subgrid mixing
- hydrostatic balance
- stable stratification N=0.01 s⁻¹
- max. temperature perturbation 0.01K
- Coriolis force included

Results - gravity waves in a short channel

M. Baldauf (DWD) 10-13 Oct. 2011

Straka, J. M., Wilhelmson, Robert B., Wicker, Louis J., Anderson, John R., Droegemeier, Kelvin K., Numerical solutions of a non-linear density current: A benchmark solution and comparison International Journal for Numerical Methods in Fluids, (17), 1993

- isentropic atmosphere, $\theta(z) = const (300K)$
- periodic lateral boundaries
- free-slip bottom b.c.
- constant subgrid mixing, $K = 75 m^{2}/s$
- domain size 51.2km x 6.4km
- bubble min. temperature -15K
- bubble size 8km x 4km
- no initial flow
- integration time 15min

Comparison of the potential temperature distribution

Comparison of potential temperature distribution at resolution 25 m

Conclusions

- for smaller scale models and dry Euler equations the anelastic approximation seems to work quite well
- keep in mind that short sound waves are also strongly damped in our compressible solver (divergence damping)
- all of the idealised tests studied in task 1.1 delivered satisfying results with the anelastic approx.
- what is the meteorological meaning of long sound waves and the Lamb mode?
- are there changes in the assessment when moist processes are studied?
- Temporal and spatial structure of the simulated convection in the EULAG experiment closely resembles the actual development.
- implementation of EULAG code into COSMO currently underway (= 'C&E')
- Results of the idealized tests obtained using the hybrid C&E model are in good qualitative and quantitative agreement both with reference and analytical solutions.
- Small differences indicate the need for further testing and verification of the C&E code.
- Dynamical core of the developed prototype, cooperates correctly with the diffusive forcing from COSMO parameterizations.
- implementation of MPDATA as an alternative tracer advection scheme into COSMO (G. deMorsier, M. Müllner (MeteoCH))

3 publications accepted for **Acta Geophysica 59 (6)**, **2011** (collection of papers for the EULAG workshop, Sopot, Sept. 2010)

B. Rosa, M. J. Kurowski, and M. Z. Ziemiański: Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical weather prediction model. Part I: Dry Benchmarks

M. J. Kurowski, B. Rosa and M. Z. Ziemiański: Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of numerical weather prediction model. Part II: Simulations of a supercell

M. Z. Ziemiański, M. J. Kurowski, Z. P. Piotrowski, B. Rosa and O. Fuhrer. Toward very high resolution NWP over Alps: Influence of the increasing model resolution on the flow pattern

M. Baldauf: Non-hydrostatic modelling with the COSMO model,
 proceedings of 'ECMWF workshop on non-hydrostatic modelling', 2010, p. 161-169
 ← Dispersion relation of sound/gravity waves in filtered equations

<u>goal</u>: prototype of a complete implementation/coupling of EULAG dyn. core into COSMO at end of 2012

Other current numerics developments in COSMO

current dynamical core:

- split-explicit time integration (*Klemp, Wilhelmson, 1978, MWR*) of the fully compressible non-hydrostatic equations
- 5th order horiz. advect. + 3-stage Runge-Kutta (*Wicker, Skamarock, 2002, MWR*), (*Baldauf, 2008, JCP*)
- HE-VI fast waves (sound, gravity waves) (Baldauf, 2010, MWR)

why conservation / finite volume discretization is important for a dynamical core ... an example

Avoid O-Peaks in COSMO

U. Blahak (DWD)

The COSMO-model produces in connection with small-scale, thermically driven circulations strange effects like "O-peaks" in Alpine valleys or grid point storms at mountains or at the coast.

© Routine-Wachhund (B. Ritter)

Explanation by an idealised study

2D-simulation (dry), at t=0: V = 0, N = 0.01 s⁻¹, surface is warmer than atmosph

Explanation by an idealised study

$$Adv_{X,T} = -U \frac{dT}{dx} \approx -\left(\underbrace{\begin{array}{c} U_{i-1/2} + U_{i+1/2} \\ 2 \end{array}}_{upwind} \Delta_{upwind}(T_i, sign(\overline{U})) \right)$$

<u>U</u> ∼0‼

Although correct for the center of the column, it is not representative for the grid box averaged horizontal advection of T (and p') !

... whereas vertical adv. and divergence terms are representatively estimated!

 \rightarrow too few lateral inflow of cool air into the column

 \rightarrow artificial heat source !!!

Ad-hoc correction:

$$Adv_{X,T} \approx -\frac{1}{2} \left\{ U_{i-1/2} \Delta_{upwind}(T_{i}, sign(U_{i-1/2})) + U_{i+1/2} \Delta_{upwind}(T_{i}, sign(U_{i+1/2})) \right\}$$

Explanation by an idealised study

2D-simulation (dry), at t=0: V = 0, N = 0.01 s⁻¹, surface is warmer than atmosph

Development of a new fast waves solver for the Runge-Kutta scheme

Main changes towards the current solver:

- 1. improvement of the vertical discretization: use of weighted averaging operators for all vertical operations
- 2. divergence in strong conservation form

$$D = \frac{1}{r\cos\phi} \frac{1}{\sqrt{g}} \left[\frac{\partial}{\partial\lambda} \left(\sqrt{g} \, u \right) + \frac{\partial}{\partial\phi} \left(\cos\phi\sqrt{g} \, v \right) + \frac{\partial}{\partial\zeta} \left(J_{\lambda}u + J_{\phi}\cos\phi \, v - r\cos\phi \, w \right) \right]$$

3. optional: complete 3D divergence damping

stability inspected in Baldauf (2010) MWR

M. Baldauf (DWD)

COSMO-run with a resolution of 0.01°(~ 1.1km) 1700 * 1700 grid points

model crash after 10 time steps with the current fast waves solver

stable simulation with the new FW

simulation by Axel Seifert (DWD)

shear instability in COSMO-DE at 26.08.2011, 6 UTC run, after about 14h30 min

 $\frac{\partial \phi}{\partial t} = \dots - K_4 \Delta \Delta \phi$

Additionally to a 4th order hyperdiffusion ...

dim.-less diffusion coeff.: $\alpha_4 := K_4 \Delta t / \Delta x^4$ stability for $0 \le \alpha_4 \le 1/64 \sim 0.016$ in COSMO-EU: $\alpha_4 = 0.25 / (2\pi^4) \approx 0.0013$ only for vin COSMO-DE: $\alpha_4 = 0.1 / (2\pi^4) \approx 0.0005$ only for v

... non-linear Smagorinsky-diffusion needed

Smagorinsky (1963) MWR:

$$\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u = \dots + K_{smag} \Delta u,$$
$$\frac{\partial v}{\partial t} + \mathbf{v} \cdot \nabla v = \dots + K_{smag} \Delta v,$$
$$\frac{\partial w}{\partial t} + \mathbf{v} \cdot \nabla w = \dots + 0,$$

$$K_{smag} = l_s^2 \cdot \sqrt{T^2 + S^2}$$
$$T = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y},$$
$$S = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}.$$
$$l_s = c f(\Delta x, \Delta y)$$

dimensionless diffusion coefficient: $k_{smag} := K_{smag} * \Delta t / l_s^2$ stability $\rightarrow k_{smag} < \frac{1}{2}$

MetStröm

D. Schuster, M. Baldauf (DWD), D. Kröner, S. Brdar, R. Klöfkorn, A. Dedner (Univ. Freiburg)

A new dynamical core based on Discontinuous Galerkin methods Project 'Adaptive numerics for multi-scale flow', DFG priority program 'Metström'

PhD student (financed by DFG (german research community) for 4 years)

- DG-RK method in a toy model implemented
- currently: implementation of DG solver in the COSMO model (explicit (RK integration), flat terrain)

shallow water equations:

$$\begin{aligned} \frac{\partial h}{\partial t} + \frac{\partial hu}{\partial x} + \frac{\partial hv}{\partial y} &= 0\\ \frac{\partial hu}{\partial t} + \frac{\partial (hu^2 + \frac{1}{2}gh^2)}{\partial x} + \frac{\partial (huv)}{\partial y} &= 0\\ \frac{\partial hv}{\partial t} + \frac{\partial (huv)}{\partial x} + \frac{\partial (hv^2 + \frac{1}{2}gh^2)}{\partial y} &= 0 \end{aligned}$$

21

A new dynamical core based on Discontinuous Galerkin methods

higher order DG methods have the potential to be more efficient if the accuracy requirements are high

from: Brdar, Baldauf, Klöfkorn, Dedner: Comparison of dynamical cores for NWP models, submitted to *Theor. Comp. Fluid Dynamics*

Wave propagation properties of different equation sets (analytic consideration)

Comparison between the compressible equations and the anelastic approximation; linear analysis (normal modes)

$$\frac{\partial u'}{\partial t} + u_0 \frac{\partial u'}{\partial x} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial x} + \alpha_D \frac{\partial D'}{\partial x}$$

$$\delta_1 \left(\frac{\partial w'}{\partial t} + u_0 \frac{\partial w'}{\partial x} \right) = -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} - \delta_{LH} \frac{N^2}{g} \frac{p'}{\rho_0} - g \frac{\rho'}{\rho_0} + \alpha_{D,v} \frac{\partial D'}{\partial z}$$

$$\delta_2 \frac{\partial \rho'}{\partial t} + \delta_3 u_0 \frac{\partial \rho'}{\partial x} + \delta_5 w' \frac{\partial \rho_0}{\partial z} = -\rho_0 D'$$

$$\frac{\partial p'}{\partial t} + \delta_4 u_0 \frac{\partial p'}{\partial x} + w' \frac{\partial p_0}{\partial z} = c_0^2 \left(\frac{\partial \rho'}{\partial t} + u_0 \frac{\partial \rho'}{\partial x} + w' \frac{\partial \rho_0}{\partial z} \right)$$

$$D' := \frac{\partial u'}{\partial x} + \frac{\partial w'}{\partial z}$$
Bretherton-Transformation: $\phi' = \left(\frac{\rho_0}{\rho_s} \right)^{\alpha} \cdot \phi_b$
(inverse) scale height: $\frac{1}{H} := -\frac{\partial}{\partial z} \log \frac{\rho_0}{\rho_s} \sim (10 \text{ km})^{-1}$

$$\frac{\partial D'}{\partial x} = \frac{\rho_0 + p'}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0 + \rho_0}{\rho_0} + \alpha_D \frac{\partial D'}{\partial z} = \frac{\rho_0}{\rho_0} +$$

Baldauf (2010) proc. 'ECMWF workshop on non-hydrostatic modelling', ECMWF, p. 161-169 Davies et al. (2003) QJRMS

Dispersion relation $\omega = \omega(k_x, k_z)$ of internal waves

Dispersion relation $\omega = \omega(k_x, k_z)$ of internal waves

Dispersion relation for horizontally propagating gravity waves isothermal stratification

Dispersion relation for horizontally propagating gravity waves isothermal stratification

Dispersion relation for horizontally propagating gravity waves N=0.01 1/s

Dispersion relation for horizontally propagating gravity waves N=0.01 1/s

General meteorological situation in the Alpine region - 12 July 2006

Synoptic situation in the area: slow-moving cold front in a shallow surface trough of low pressure

This is representative case study for summer (convective) situations.

Synoptic map – 2:00 UTC, 12 July 2006

MSG (Meteosat Second Genertion) 12:00 UTC

Comparison with analytical solution

 $\theta' = \theta - \theta(t=0)$

%6 A

Gravity waves in a long channel

Gravity waves in a long channel

%

Reduction of "Theta-peaks" in July 2011 (COSMO-DE)

© B. Ritter

Experiment: 1.6. - ~20.7.2011

Artificial horizontal hyper-diffusion 4th order

$$\frac{\partial \phi}{\partial t} = \ldots - K_4 \Delta \Delta \phi$$

... or dim.-less diffusion coeff.: $\alpha_4 := K_4 \Delta t / \Delta x^4$

stable + 'non-oszillating' sinus-waves: für $0 \le \alpha_4 \le 1/64 \sim 0.016$ $(0 \le \alpha_4 \le 1/128$ for Leapfrog $(2 \Delta t))$ $\begin{array}{c} 0.99\\ 0.98\\ 0.97\\ 0.96\\$

in COSMO-EU: $\alpha_4 = 0.25 / (2\pi^4) \approx 0.0013$ only for vin COSMO-DE: $\alpha_4 = 0.1 / (2\pi^4) \approx 0.0005$ only for v(and in a boundary zone for v, p', T', q_v)

- Diffusion 4th order is not monotone! \rightarrow flux limitation necessary
- additional orography-limitation:

diffus. flux=0, if slope of a coordinate plane > 250 m / Δx