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COSMO-Priority Project 'Conservative dynamical core '

Main goals:

• develop a dynamical core with at least conservation of mass, 
possibly also of energy and momentum

• better performance and stability in steep terrain

2 development branches:

• assess aerodynamical implicit Finite-Volume solvers (Jameson, 1991)
P.L. Vitagliano (CIRA, Italy), L. Torrisi (CNMCA, Italy), M. Baldauf (DWD)

• assess dynamical core of EULAG (e.g. Grabowski, Smolarkiewicz, 2002)
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• assess dynamical core of EULAG (e.g. Grabowski, Smolarkiewicz, 2002)
M. Ziemianski, M. Kurowski, B. Rosa, D. Wojcik (IMGW, Poland), 
O. Fuhrer ( MeteoCH), M. Baldauf (DWD)

EULAG: anelastic approximated equations (Lipps, Hemler, 1982)
MPDATA for advection, GMRES for elliptic solver
non-oszillatory forward-in-time (NFT) integration scheme



Experiments involve a case study of summer Alpine convection on 12 July 2006.

Simplified parameterizations:
• Boundary layer processes are represented by a 1-eq. TKE  (turbulent kinetic energy) model
• Surface fluxes and drag are taken from the operational run of the COSMO2 model for CH

Test the EULAG model under semi-realistic
conditions

• Surface fluxes and drag are taken from the operational run of the COSMO2 model for CH
• Simple representation of moist processes (warm rain Kessler-scheme)

Experiment setup:
• Horizontal resolution 1.1 km, vertical resolution as in COSMO2
• The computational domain is restricted to 234x198 km and covers the Southern Alps
• Initial, boundary conditions from COSMO2 operational run
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Comparison of the EULAG simulation with satellite i mages

12:00 UTC

12:00 UTC

15:00 UTC
15:00 UTC
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Temporal and spatial structure of the simulated convection in 
the EULAG experiment closely resembles the actual development



Skamarock W. C. and Klemp J. B. Efficiency and accuracy of Klemp-Wilhelmson 
time-splitting technique.Mon. Wea. Rev.122: 2623-2630, 1994

Initial potential temperature perturbation Initial potential temperature 
perturbation

... now test the implementation of the 
EULAG dynamical core in COSMO

Setup overview:

� domain size 300x10 km
� resolution 1x1km, 0.5x0.5 km, 0.25x0.25 km
� rigid free-slip b.c.Constant ambient flow within channel 300 km 
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� rigid free-slip b.c.
� periodic lateral boundaries 
� constant horizontal flow 20m/s at inlet
� no subgrid mixing
� hydrostatic balance
� stable stratification N=0.01 s-1

� max. temperature perturbation 0.01K
� Coriolis force included

Constant ambient flow within channel 300 km 
and 6000 km long
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Results - gravity waves in a short channel

Eulag
C&E

θ' = θ - θ(t=0)

Eulag
C&E
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Eulag
C&E



Straka, J. M., Wilhelmson, Robert B., Wicker, Louis J., Anderson, John R., 
Droegemeier, Kelvin K., Numerical solutions of a non-linear density current:
A benchmark solution and comparisonInternational Journal for Numerical 
Methods in Fluids, (17), 1993

)300( Kconst=θ

Methods in Fluids, (17), 1993
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Experiment configuration:

• isentropic atmosphere, 
θ(z)=const  (300K)

• periodic lateral boundaries
• free-slip bottom b.c.
• constant subgrid mixing,

K=75m2/s
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free-slip b.c.

periodicb.c.periodicb.c.K=75m /s
• domain size 51.2km x 6.4km
• bubble min. temperature -15K
• bubble size 8km x 4km
• no initial flow
• integration time 15min



Comparison of the potential temperature distributio n

Cosmo
100m

θ' = θ - θ(t=0)

C&E
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Eulag



Cosmo

Comparison of potential temperature distribution at resolution 25 m

25m
θ' = θ - θ(t=0)

C&E
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Eulag



1. MOTIVATION 

• for smaller scale models and dry Euler equations the anelastic approximation seems to 
work quite well

• keep in mind that short sound waves are also strongly damped in our compressible 
solver (divergence damping)

• all of the idealised tests studied in task 1.1 delivered satisfying results

Conclusions

• all of the idealised tests studied in task 1.1 delivered satisfying results
with the anelastic approx.

• what is the meteorological meaning of long sound waves and the Lamb mode?
• are there changes in the assessment when moist processes are studied? 

� Temporal and spatial structure of the simulated convection in  the EULAG experiment 
closely resembles the actual development.

� implementation of EULAG code into COSMO currently underway (= 'C&E')
Results of the idealized tests obtained using the hybrid C&E model are in good
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� Results of the idealized tests obtained using the hybrid C&E model are in good
qualitative and quantitative agreement both with reference and analytical solutions. 

� Small differences indicate the need for further testing and verification of the C&E code.
� Dynamical core of the developed prototype, cooperates correctly with the diffusive 

forcing from COSMO parameterizations.

� implementation of MPDATA as an alternative tracer advection scheme into COSMO
(G. deMorsier, M. Müllner (MeteoCH)) 



3 publications accepted for Acta Geophysica 59 (6) , 2011
(collection of papers for the EULAG workshop, Sopot, Sept. 2010)

B. Rosa, M. J. Kurowski, and M. Z. Ziemiański: Testing the anelastic nonhydrostatic 
model EULAG as a prospective dynamical core of a numerical weather prediction model. model EULAG as a prospective dynamical core of a numerical weather prediction model. 
Part I: Dry Benchmarks

M. J. Kurowski, B. Rosa and M. Z. Ziemiański: Testing the anelastic nonhydrostatic model 
EULAG as a prospective dynamical core of numerical weather prediction model. Part II: 
Simulations of a supercell

M. Z. Ziemiański, M. J. Kurowski, Z. P. Piotrowski, B. Rosa and O. Fuhrer: Toward very 
high resolution NWP over Alps: Influence of the increasing model resolution on the flow 
pattern

10-13 Oct. 2011M. Baldauf (DWD) 11

M. Baldauf: Non-hydrostatic modelling with the COSMO model,
proceedings of ‘ECMWF workshop on non-hydrostatic m odelling ’, 2010, p. 161-169
� Dispersion relation of sound/gravity waves in filtered equations

goal: prototype of a complete implementation/coupling of EULAG dyn. core 
into COSMO at end of 2012



Other current numerics developments in COSMO

current dynamical core:

• split-explicit time integration (Klemp, Wilhelmson, 1978, MWR)
of the fully compressible non-hydrostatic equations
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• 5th order horiz. advect. + 3-stage Runge-Kutta
(Wicker, Skamarock, 2002, MWR), (Baldauf, 2008, JCP)

• HE-VI fast waves (sound, gravity waves) (Baldauf, 2010, MWR)



U. Blahak (DWD)Avoid Ө-Peaks in COSMO

why conservation / finite volume discretization is important 
for a dynamical core … an example

The COSMO-model produces in 
connection with small-scale, 
thermically driven circulations 
strange effects like „Ө-peaks“ in 
Alpine valleys or grid point 
storms at mountains or at the 

U. Blahak (DWD)Avoid Ө-Peaks in COSMO
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storms at mountains or at the 
coast.

© Routine-Wachhund (B. Ritter)



Explanation by an idealised study

2D-simulation (dry),   at t=0: V = 0, N = 0.01 s-1, surface is warmer than atmosph

~ 15 m/s !
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U is staggered. grid boxes are shifted 
by 1/2 dx 



AdvX , T = − U
dT
dx

≈ − (U i − 1/2 + U i + 1/2

2 )∆upwind(T i , sign(U ))

~ 0 !!U

Explanation by an idealised study

2

Although correct for the center of the column, it is not
representative for the grid box averaged horizontal 
advection of T (and p') !
... whereas vertical adv. and divergence terms are 
representatively estimated!

� too few lateral inflow of cool air into the column
� artificial heat source !!!

~ 0 !!U
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AdvX , T ≈ − 1
2

{ U i − 1/2 ∆upwind(T i , sign(U i − 1/2)) +

U i+ 1/2 ∆upwind(T i , sign(U i+ 1/2)) }

Ad-hoc correction:



Explanation by an idealised study

2D-simulation (dry),   at t=0: V = 0, N = 0.01 s-1, surface is warmer than atmosph

~ 3 m/s !
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U is staggered. grid boxes are shifted 
by 1/2 dx 



Main changes towards the current solver:

Development of a new fast waves solver
for the Runge-Kutta scheme

M. Baldauf (DWD)

Main changes towards the current solver:

1. improvement of the vertical discretization: 
use of weighted averaging operators for all vertical operations

2. divergence in strong conservation form
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3. optional: complete 3D divergence damping

stability inspected in Baldauf (2010) MWR



simulated radar reflectivity
COSMO-run with a resolution
of 0.01°(~ 1.1km)
1700 * 1700 grid points

model crash after 10 time steps 
with the current fast waves solver

stable simulation with the new FW

10-13 Oct. 2011M. Baldauf (DWD) 18

simulation by Axel Seifert (DWD)



shear instability in COSMO-DE at 26.08.2011, 6 UTC run, after about 14h30 min
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Additionally to a 4th order hyperdiffusion ... 

dim.-less diffusion coeff.:   α4 := K 4 ∆t / ∆x4

stability for 0 ≤ α4 ≤ 1/64 ~0.016  
in COSMO-EU: α = 0.25 / (2π4) ≈ 0.0013 only for v

... non-linear Smagorinsky-diffusion needed Smagorinsky (1963) MWR:

in COSMO-EU: α4 = 0.25 / (2π4) ≈ 0.0013 only for v
in COSMO-DE: α4 = 0.1 /  (2π4) ≈ 0.0005 only for v
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ls = c f(∆x, ∆y)

dimensionless diffusion coefficient:
ksmag:= K smag* ∆t / ls2

stability � ksmag < ½



A new dynamical core based on Discontinuous Galerki n methods
Project ‘Adaptive numerics for multi-scale flow’, DFG priority program ‘Metström’

D. Schuster, M. Baldauf (DWD), D. Kröner, S. Brdar, R. Klöfkorn, A. Dedner (Univ. Freiburg)

PhD student (financed by DFG (german research community) for 4 years)

• DG-RK method in a toy model implemented
• currently: implementation of DG solver in the 

COSMO model (explicit (RK integration), flat 
terrain)

shallow water equations:
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A new dynamical core based on Discontinuous Galerki n methods

Comparison between COSMO and Comparison between COSMO and 
the DUNE library:
test case linear gravity wave 
(Skamarock, Klemp (1994) MWR)
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from: Brdar, Baldauf, Klöfkorn, Dedner:
Comparison of dynamical cores for NWP models,
submitted to Theor. Comp. Fluid Dynamics

higher order DG methods have the potential to be more 
efficient if the accuracy requirements are high
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Wave propagation properties of different 
equation sets
(analytic consideration)
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Comparison between the compressible equations and t he anelastic 
approximation; linear analysis (normal modes)

p=p0+p’
T=T0+T’

divergence
damping

switches:
• compressible: δ =1
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Bretherton-Transformation: 

• compressible: δ1..5=1
• compr. + div. damp.:   δ1..5=1 
• anelastic: δ2,3=0, δ1,4,5=1

OP62, WO72, compr.: δLH=0 
Lipps, Hemler (1982): δLH=1(inverse) scale height:   ~ (10 km)-1

Baldauf (2010) proc. ‘ECMWF workshop on non-hydrostatic modelling’, ECMWF, p. 161-169
Davies et al. (2003) QJRMS



wave ansatz: u(x,z,t) = u(kx, kz,ω)  exp( i ( kx x + kz z -ω t ) ), w(x,z,t)= …

c sound velocity

Dispersion relation  ω = ω(kx, kz) of internal waves

Re ω/ωa

cs sound velocity
( ~ 330 m/s)

N Brunt-Vaisala-frequency
( ~ 0.01 1/s)

ωa acoustic cut off frequency
(~ 0.03 1/s)

sound waves
compr. + div.damp.
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ωa N cos β
β = ∠ (kz, kx) = 0°

k * cs / ωa

(~ 0.03 1/s)

gravity waves

λ ~ 7 km λ ~ 3.5 km



Dispersion relation  ω = ω(kx, kz) of internal waves

Im ω/ωa

Strong damping of 
short sound waves in 
the compressible 
equations due to
artificial divergence 
damping. 

(timescale 1/ω ~ 30 sec.)
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k * cs / ωa

λ ~ 7 km λ ~ 3.5 km

(timescale 1/ωa ~ 30 sec.)

N ~ 0.01 1/s
Cdiv ~0.1



Dispersion relation for horizontally propagating gr avity waves 
isothermal stratification
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Dispersion relation for horizontally propagating gr avity waves 
isothermal stratification

N cos β

β = ∠ (kz, kx) = 0°
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quite similar dispersion 
relation for anelastic 
and 
compressible eqns. 



Dispersion relation for horizontally propagating gr avity waves 
N=0.01 1/s
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Dispersion relation for horizontally propagating gr avity waves 
N=0.01 1/s

β = ∠ (kz, kx) = 0°

N cos β

β = ∠ (kz, kx) = 0°

N ~ 0.01 1/s
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quite similar dispersion 
relation for anelastic 
and 
compressible eqns. 



General meteorological situation in the Alpine regi on - 12 July 
2006

Synoptic situation in the area: slow-moving cold front in a shallow 
surface trough of low pressure

This is representative case study for summer (convective) situations.
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MSG (Meteosat Second Genertion) 12:00 UTCSynoptic map – 2:00 UTC, 12 July 2006



Comparison with analytical solution

θ' = θ - θ(t=0)

Eulag

C&E

Analytical
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Gravity waves in a long channel

Eulag

C&E

Eulag

C&E
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Eulag

C&E



Gravity waves in a long channel

C&E

Analytical

C&E

Analytical
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C&E

Analytical



Reduction of „Theta-peaks“ in July 2011 (COSMO-DE)
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Experiment: 1.6. - ~20.7.2011

© B. Ritter



Artificial horizontal hyper-diffusion 4th order

… or dim.-less diffusion coeff.:   α4 := K 4 ∆t / ∆x4

stable + 'non-oszillating' sinus-waves:
für 0 ≤ α4 ≤ 1/64 ~0.016  
(0 ≤ α4 ≤ 1/128 for Leapfrog (2 ∆t))

in COSMO-EU: α4 = 0.25 / (2π4) ≈ 0.0013 only for v
in COSMO-DE: α4 = 0.1 /  (2π4) ≈ 0.0005 only for v

(and in a boundary zone for v, p', T', q) 

k * dx

Amplification 
factor for 
α4=0.001
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(and in a boundary zone for v, p', T', qv) 

• Diffusion 4th order is not monotone! � flux limitation necessary
• additional orography-limitation: 

diffus. flux=0, if slope of a coordinate plane > 250 m / ∆x


