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Efforts at operational centers
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•  CMC (Canada)	

•  NCEP (U.S.)	

•  SMN (Mexico)	


•  U.S. Air Force Weather Agency	

•  U.S. Navy Fleet Numerical Meteorology and 

Oceanography Center (Naval Research Lab)	


•  Multi-agency ensembles 	




Canadian Regional Ensemble Prediction System 
(REPS); operational Sept 2011 

l  Based on the Global Environmental Multiscale (GEM) model version 4.2 (vertical staggering à la 
Charney-Phillips) 

l  Subgrid-scale parameterizations and horizontal grid spacing almost identical to 
Canadian deterministic global system (do not use multi-parameterization approach). 

l  Grid spacing: 0.3° x 0.3° (280 x 287 x L28 grid points) 
l  REPS lid is near 10 hPa and lid nesting technique is used 

Ø  piloting between 10 and 35 hPa 
Ø  blending between 35 and 100 hPa 

l  Piloted with a 3h frequency by the global Canadian EPS with lid at 2 hPa 
l  Initial conditions from the global EnKF (same as global EPS) 
l  Lead time: 72 hours 
l  20 members + one control run 
l  Sources of stochasticity 

l  Stochastic perturbations of physical tendencies 
l  Initial conditions (global EnKF) 
l  Boundary conditions (global EPS) 

M. Charron, R. Frenette, N. Gagnon	




The REPS domain 

M. Charron, R. Frenette, N. Gagnon	




REPS: What’s next? 
l  Better surface and near-surface model error representation by 

perturbing uncertain parameters and fields related to the 
surface scheme 

l  Horizontal grid spacing at 20 km in 2012 

l  Dedicated regional ensemble-based data assimilation 
(regional EnKF) in ~2013 

M. Charron, R. Frenette, N. Gagnon	




NCEP SREF Planned Changes Spring 2012 
I.  Model Changes 
     1. 4-model system becomes 3-model system (remove old Eta and RSM, add 
NEMS-NMMB) 
     2. Model’s horizontal resolution increases from 32km to 20km 

II.  IC diversity improvement 
     1. Use more diversity of control analyses: from 2 to 3 (add Rapid Refresh) 
     2. Improve IC perturbation by blending larger-scale ETR and smaller-scale BV 
     3. Change 2-D mask to 3-D mask to control IC perturbation size vertically 

III.  Physics diversity improvement 
     1. Add stochastic parameterization Cu physics scheme 
      
IV.  Ensemble product improvements 
      1. Precipitation bias correction (frequency-matching method)  
      2. Clustering 
      3. Statistical downscaling to 2.5km using hi-res analysis RTMA 
      4. Many new ensemble products including min/max, 10-25-50-75-90%, best/
worst members, weighted-mean, extreme weather probability as well as aviation, 
wind energy, fire weather and convection-specific probabilistic products  

J. Du	




Difference in precipitation FCST (“exp - ctl”)  
due to stochastic convective parameterization (Hurricane Ike) 

J. Du	


Shifted precip. region	




Predicting individual member performances  
(Du and Zhou, 2011, MWR) 
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Mexico 
•  Experiment to scope an improved and coordinated 

operational capability:	

•  Compare the skill performance of regional forecasts systems, 

particularly WRF-based total precipitation, under a wide range of 
configurations. 	


•  Investigate tradeoffs between resolution and ensemble size	


•  Compare the performance of WRF run in the experiment versus the 
performance of operational NCEP models (GFS and NAMS) 
available for the region. 	


•  Compare historical observations with the NCEP regional reanalysis, 
and the WRF DA, to assess the performance of the data assimilation 
schemes and identify regions where quality-controlled observations 
are required. 	


M. Pena	




RMSE	


Daily accumulated precipitation (mm): 
rain gage (CPC) vs Reanalysis 

Region prone to 
floods	


Analyses are 
problematic in this 
region: lack of 
observations and/or 
model problem?	


Sample size: 31 
days 

M. Pena	




US Air Force Weather Ensemble 
Prediction Suite (AFWEPS) 

•  Global Ensemble Prediction Suite (GEPS)	

•  Combination of GFS, GEM, and NOGAPS ensembles	

•  Post-processed at US Air Force Weather Agency (AFWA)	


•  Mesoscale Ensemble Prediction Suite (MEPS)	

•  10 members of WRF-ARW with unique physics configurations	

•  Initial conditions are deterministic UM, GFS, GEM, and 

NOGAPS	

•  20 km northern hemisphere and tropical stripe domains to 144 

hours run once per day (18Z) with online dust	

•  Seven re-locatable 4 km (1600 km by 1600 km) domains run 

once per day to 54 hrs	

•  Appointed user can move domain—useful for contingency 

missions, tropical cyclones, severe weather outbreaks, etc	


E. Kuchera	




•  Air Force Weather Tools for decision improvement:	

•  Convection allowing ensembles (4 km resolution)	


•  Weather uncertainty due to convection is primary problem	

•  Algorithms to diagnose sub-grid scale probabilities	


•  High-impact phenomena are still sub-grid even at 4 km	

•  Probabilistic predictions of tornadoes, hail, visibility, wind 

gusts, snowfall, icing, etc	

•  Inclusion of dust online inside model	


•  Dust from convection is #1 problem to solve—addressed by 
WRF-CHEM ensemble at 4 km	


•  Also working on dust source regions and uncertainties	

•  Substantial improvement over current methods	


US Air Force Weather Ensemble 
Prediction Suite (AFWEPS) 

E. Kuchera	




Probabilistic fog forecast experiments 
with MEPS 
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Inner-most nest domain and 
verification sites (elevation in m)	


n  Visibility predictions based on 
explicitly forecast water 
content (cloud, rain, snow, ice)	


n  20-h runs initialized at 00Z 
every 3-4 days for Nov 2008 to 
Feb 2009; 29 total runs 	


n  Verification focused on seven 
sites	


n  Represent both advection 
fog and radiation fog 
cases	


n  Variety of elevations	


n  If visibility reduced due to 
precipitation, observation not 
included	




First look: individual members of 
simplified MEPS 

Acc= Hits+Corr. Rej.
Total

Accuracy SS 
using persistence 

Coastal sites 
(advection fog)	


Valley sites 
(radiation fog)	


Need to explore sensitivity to thresholds on qc and extinction	




COAMPS® Ensemble JEFS Nest 2 Domain (15-km)
Terrain (m)Surface observation locations (340)

47912
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Station = 
47912

Yonagunijima
Island

48-h 
COAMPS raw 

forecasts

Station = 
47912

Yonagunijima
Island

48-h 
COAMPS raw 

forecasts

Raw   
(mean = -2.20oC; std = 0.95oC) 

Kalman filter   
(mean = 0.11oC; std = 0.14oC) 

Bias reduction 

Reliability 

2-m air temperature: 48-h COAMPS forecasts  

Kalman-filter bias corrected 

Sample  
time series 

COAMPS Ensemble System (Navy) 
Joint Ensemble Forecast System (JEFS) 

T. Holt and J. Hansen (NRL) 



Maximum spread for atmospheric and oceanic 
temperature and winds/currents are located 
near atmospheric BL top & ocean ML bottom 

21 members (Δx=5 km), 12-h Forecasts 
25-30 June 2005  

Atmospheric u-wind component 
Ocean u-current component 

Ensemble Spread 

Atmospheric potential temperature 
Ocean temperature 

21Z 27 June 2005 (9 h) 

E W 

E W 

Atmosphere Ocean 

COAMPS Ensembles 
High-Resolution Coupled Ensembles 

T. Holt (NRL) 



Multi-center efforts 
•  Ensemble Testbed (NOAA, NCAR etc.) is 

established to accelerate transition from 
research to operations (started 2011); 

•  North American Ensemble Forecast System 
(NAEFS) expanded to regional ensemble 
(initially combining NCEP SREF with CMC 
regional ensemble system, 2015, Jun Du/NCEP 
and Martin Charron/CMC) 



National Unified Operational Prediction 
Capability 

•  Air Force, Navy, NOAA partnership 
•  A managed National multi-model 

ensemble prediction system. 
•  A common modeling framework linking 

operations and research. 
•  Draw on individual partner modeling 

strengths. 

D. McCarren, S. Sandgathe	




Model Error: Calibration
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•  Increase in interest and activity during 2010-11	

•  In U.S., motivated largely by private sector and 

NWS forecast office needs	

•  Historical data set production still a challenge for 

mesoscale LAM-EPS 	

•  Following example uses quantile regression (QR) 

as a basis to calibrate NCAR’s 4DWX ensemble 
predictions in the desert near Salt Lake City, UT	

•  What should regressors be? How does calibration 

change needs for ensembles size?	




NCEP: Frequency-matching corrected SREF precip -  
light precip reduced and heavier precip enhanced 

 raw member #13	
  bias corrected	


 raw member #16	
  bias corrected	

J. Du	




Model Error: Representing Uncertainty
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•  Stochastic Kinetic Energy Backscatter Scheme 
now in WRF release (Berner et al. 2011).	


•  Primary conclusions:	

•  SKEBS superior to multi-physics scheme	

•  Multiple model uncertainty schemes working 

together give superior skill.	

•  Why? General guidance still lacking except 

where we can interpret behavior near surface and 
aloft.	




Including model “perturbations” in the WRF 

J. Berner	


Small number of 
physics schemes 
combined with 
parameter 
perturbations 
gives best spread 
and error.	


Spread	

RMSE	


Bias	




Including model “perturbations” in the WRF 

SKEBS helps most in mid-
troposphere	


Multi-physics and 
combined approach helps 
near surface	


J. Berner	


Brier score 
and 
differences	




LAM ensemble filters
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•  Significant activity at universities and labs	

•  Emphasis on ensemble filters for ensemble 

production	

•  Ensemble filters as a tool to understand 

predictability and dynamics	




Accounting for model uncertainty in DA

25	


•  Multiple models or schemes violate assumptions 
underpinning ensemble data assimilation.	

•  Easy to think of situations where it might cause 

problems (e.g. clustering by parameterization 
scheme)	


•  Some accounting for model error surely improves 
mesoscale ensemble forecasts.	


•  Differentiate between more persistent differences 
between models (biases) and faster-scale 
differences that appear more random. 	




•  MADIS (Meteorological Assimilation Data Ingest System) 
•  RAOB   - u, v, t, td, surface altimeter   
•  METAR - u, v, t, td, surface altimeter  
•  Marine - u, v, t, td, surface altimeter 
•  ACARS - u, v, t, td 
•  Surface observations: metar (for assimilation) and integrated 
mesonet (for verification) 

 

Observations for data assimilation 

S.-Y. Ha	




Experiment design  

Grids 
D1: 123 x 99 (45-km) 
D2: 163 x 106 (15-km) 
41 levels, two-way nesting 
 
IC/LBCs 

•  1°x1° GFS analyses were used for initialization in 
both domains 

•  1°x1° GFS forecasts were used to generate lateral 
boundaries at 45-km grid four times a day 

Ensemble 
-  50-member ensemble 
-  WRF/DART to generate analyses and forecast 

Cycling period: 1-10 June 2008 (3-hrly cycling) 

S.-Y. Ha	




Surface mesonet verification; 3-h forecast and analysis 

10-m U 

10-m V 

SKEBS (BS) 
more skillful 
than multi-
physics at the 
surface, within 
filtering 
context.	


S.-Y. Ha	




Verification against radiosondes; 
3-h forecast 

SKEBS (SP) gives 
lower error and good 
spread-error 
consistency within 
filtering context.	


S.-Y. Ha	




Advanced Hurricane WRF Cycling 
Assimilation System 

•  WRF ARW (v3.3), 36 km horizontal resolution over basin, 96 
ensemble members, DART assimilation system (http://
www.image.ucar.edu/DAReS/DART/). 

•  Observations assimilated each six hours from surface and marine 
stations (Psfc), rawinsondes, dropsondes > 100 km from TC, 
ACARS, sat. winds, TC position, MSLP, GPS RO 

•  Initialized system on 29 July 
2011, continuous cycling 
using GFS LBC 

•  No vortex bogusing or 
repositioning, all updates to 
TC due to observations 

R. Torn	




2008-2010 Retrospective Forecasts 

Track Maximum Wind Speed 

R. Torn	




Opportunities!
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Post-docs wanted:	

•  Investigations of structural model error within an 

ensemble filter framework (at NPS)	

•  Predictability and observing strategies in complex 

terrain (at NPS)	

•  Marine boundary layer parameterization and 

ensemble data assimilation (at NCAR and/or 
NPS)	




Extras 



Verification against radiosondes 
REPS (GEM 4.2, red) vs REPS (GEM 3.2, blue) 

CRPS (left) and CRPS difference (with 90% confidence 
intervals, right) between the previous experimental REPS 
(blue) and operational REPS (red).	


Temperature at 
850 hPa	


Geopotential 
Height at 500 hPa	


M. Charron, R. Frenette, N. Gagnon	




Examples of severe thunder, lightning and dry 
lightning probabilistic products 

J. Du	
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Covariance between SLP and  
  700 hPa Temp (contours)  
  700 hPa RH (fill) 

100-member EnKF Data Assimilation System (27 and 9-km) 
Puget Sound 850 hPa Temp 
17 Warm and Cold Members 

• Flow dependent mesoscale covariances   
• Mesoscale cyclogenesis (500 km difference in low position) 
• Rapid error growth; 36-h temperature differences of 6°C.  

Ensemble Data Assimilation and Predictability 
Application of COAMPS EnKF to Pacific NW Snowstorm 

A. Reinecke and J. Doyle (NRL) 



COAMPS-TC DART Ensemble System Tested in Real Time in 2011.  The 
System Performed Well during the Landfall of Hurricane Irene.   

10 Member 5-km Resolution Ensemble System (COAMPS-TC DART) 

TC position from individual ensemble members 
every 24 h and ellipses that encompass the 1/3 

and 2/3 ensemble distributions.  

Median, minimum, maximum, and 10% 
and 90% distributions are shown 

COAMPS-TC 
Irene Ensemble Forecasting 

A. Reinecke and J. Doyle (NRL) 



• Atmos: 81 km & 27 km; Ocean: 27 km 
• The ensemble forecast can provide 

reasonable uncertainty information 
• The ensemble mean shows a similar location 

for the SST decrease as observed 
• Bias correction is able to improve the 

ensemble mean SST 

TC Ensemble Forecast Tracks and Best Track Ensemble Forecast Bias Correction 
Lagged bias average method 

Sea Surface Temperature Difference 

COAMPS-TC Coupled Ensembles 
2-Way (Air-Ocean) Coupled Forecasts of Ike 

X. Hong and T. Holt (NRL) 



National Unified 
Ensemble 

•  Common output formats 

•  Same forecast times 

•  73 common variables 

•  Products being developed to support mission 
needs 

•  Future development being coordinated by a tri-
agency management committee 

D. McCarren, S. Sandgathe	




Where We Are   
•  Well Established Tri-Agency Partnership 
•  Initial Operational Capability of  National 

Unified Ensemble in  January 2011 
•  Software architecture and interoperability 

standards part of latest release of the Earth 
System Modeling Framework. 

	

•  National R&D agenda for advancing 

global NWP presented to American 
Meteorological Society Meeting – 
January 2011 	


D. McCarren, S. Sandgathe	




Future 
Next Generation Prediction 

Capability 
 

•  New modeling techniques to improve predictive 
skill 

•  Exploit interoperability architecture for a fully 
coupled system: land, ocean, ice, wave, 
atmosphere, space, ecosystem. 

•   Exploit emerging computing capabilities 

•  Improved inter-annual to decadal predictions 

Earth System Prediction Capability  
(ESPC)  

D. McCarren, S. Sandgathe	
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represented by interpolated quans 

T. Hopson	




42-hr dewpoint calibration 

Before Calibration	
 After Calibration	

Station DPG S01	


T. Hopson	




Significant calibration regressors 

3hr Lead-time	
 42hr Lead-time	


Station DPG S01	


T. Hopson	
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§  More members improve mean of PDF if 
error growth less than linear and 
members are uncorrelated 

§  For perfectly-correlated ensembles, any 
additional member degrades skill 

T. Hopson	




0000 UTC 2 Aug. Ensemble 

R. Torn	




R. Torn	



