MACC Monitoring Atmospheric Composition and Climate

Delivering global and regional atmospheric composition services using forecasting and assimilation tools

Sylvie Malardel, V.-H. Peuch, A. Simmons and the MACC consortium

A 45-partner/18-country project developing the operational GMES Atmosphere Monitoring Service

Slide 2

http://www.gmes-atmosphere.eu

Jacc

The MACC global reactive gases system evolution

Pre-GEMS, GEMS studies : IFS and CTMs separate

GEMS: 2005-2009 MACC: 2009-2011 MACC-II: 2011-2014

IFS NWPM ECMWF 4d-var strat. ozone assimilation (linear scheme)

KNMI

MOZART CTM Jülich, NCAR

TM5 CTM **MOCAGE CTM** Météo-France

GEMS development, GEMS/MACC production : IFS and CTMs coupled

MACC develop., MACC-II production : IFS with online CTMs chemistry

C-IFS v0 4d-var assimilation for ozone, CO, NO₂, **SO**₂...

Assimilation and forecast suites

A multi-model ensemble of regional chemistry and transport models (off-line)

3 streams :

- NRT analyses and forecasts
- Delayed mode
 (6m-1y)
 analyses
- Re-analyses

A global integrated system based on the IFS and including composition ("C-IFS", on-line). Note: not all couplings are currently active.

ocition & climat

Global Aerosol: on-line approach in IFS

Example : Assimilation of MODIS AOD at 550 nm, Saharan dust outbreak, 06-03-2004

Morcrette et al., 2009, JGR; Benedetti et al., 2009, JGR

acc 2010 fires over western Russia : AOD and CO

cition & climat

days in July / August

Beyond composition, benefits to expect on NWP

Bias correction using fixed CO₂ of 377 ppm, the value prescribed in RTTOV

See Engelen and Bauer, QJRMS, 2011: CO₂ modelling allows a drastic reduction of the bias correction for assimilation

> Bias correction using variable CO₂ modelled with MACC system

Mean bias correction (K) for August 2009 for AIRS channel 175 (699.7 cm⁻¹; maximum temperature sensitivity at ~ 200 hPa)

Regional Air Quality products (Europe) Jacc Aonitoring atmospher

composition & climate

MACC european regional AQ ensemble

CHIMERE INERIS, CNRS	<i>Current geometry</i> 25km, L8, top : 500hpa	Assimilation method Optimal Interpolation	<i>Operations</i> run @ INERIS
EMEP met.no	0.2°, L20, top : 100hpa	3d-var in development	run @ met.no
EURAD FRIUUK	15km, L23, top : 100hpa	Variational, 3d-var	run @ ECMWF
L-EUROS TNO, KNMI	15km, L4, top : 3.5km	Ensemble Kalman Filter	run @ KNMI
МАТСН БИЛИКА	0.2 [°] , L40, top : 100hpa	Variational, 3d-var	run @ SMHI
MOCAGE MF, CERFACS	0.2°, L47, top : 5hpa	Variational, 3d-var	run @ MF
SILAM FMI	0.2°, L46/5, top : 100hpa	Variational, 4d-var	run @ FMI
 + same emissions, same met forecasts (IFS), same chemical boundary conditions (MACC global) : spread comes from differences in CTM formulation 			
MACC: Monitoring Atmospl	heric Composition and Climate	Slide 10	FCMWF

Why an ensemble approach?

An ensemble of models provides additional useful

... specially when situation

GMES RAQ EPSGRAM Paris(48.86 ° N, 2.35 ° E) Forecast Tuesday 30 June 2009 00 UTC

... but the median of the ensemble has always among the best skill scores (here PM10 RMSE for

acc Inter-model skill score dispersion and AQ variables

« Erroneous » model dispersion (due to bugs in the implementation of the specific MACC versions...) has been most likely ironed out, but it took more than a year. Dispersion is probably representative now of raw uncertainty in current regional Air Quality models.

Outlook

MACC (and its successor project MACC-II, 01/11/2011 to 31/07/2014) relies on a range of numerical tools to deliver products pre-figuring future operational GMES atmospheric services :

- on the regional scale, a multi-model (off-line) approach is used and effectively produces analyses and forecasts of highest quality, merging efforts from several of the leading AQ operational forecasting teams in Europe.
- on the global scale, the effort is now on integrating composition (aerosol, reactive gases, greenhouse gases) directly into the IFS. Feedbacks on NWP, that in turn further benefits to the quality of atmospheric composition products, are indeed expected.

MACC is the effort of an entire consortium. Only a limited number of partners actually run pre-operational systems, but we rely on wider research activities (developments, algorithms, validation...) that are essential to maintain at the best international level, very much like it is the case for operational NWP.

