

Evaluation of different perturbation approaches to provide initial and boundary conditions to a short-range LAM ensemble

Chiara Marsigli, Andrea Montani, Tiziana Paccagnella ARPA-SIMC, Bologna, Italy

- Part of the CONSENS Priority Project of COSMO
- Assess the validity of the multi-model approach to provide initial and boundary conditions to a LAM ensemble with respect to using a single model ensemble (EPS)
- Would a few global model runs be sufficient to provide the required amount of diversity to drive a LAM-EPS ensemble of 10-20 member size?
 - how the skill of the ensembles relates to the population?

- Downscaling of some selected members of the ECMWF EPS with the LAM COSMO
- Selection is made using a Cluster Analysis and Representative Member selection technique
- Perturbations of the model physics parameters are applied to the COSMO runs
- Operational since November 2002
 - 12 UTC
 - 7 km, 40 levels
 - 16 members
 - 132 h

- Multi-analysis multi-boundary approach
- IC and BC are provided by 3 operational deterministic global models (IFS, GME, GFS)
- Perturbations of the model physics parameters are applied to the COSMO runs
- Running regularly since November 2010

- 00 and 12 UTC
- 7 km, 40 levels
- 16 members
- 48 h

Ensemble mixing

- Winter 2010/2011 (20 Nov 2010 28 Feb 2011)
- Northern Italy high-density network
- Average and maximum precipitation over boxes

Average precipitation on 0.5 x 0.5 deg boxes > 1mm/6h

fc. range (h)	6	12	18	24	30	36	42	48
number of occurrences	563	502	529	618	577	465	511	584

• COSMO-LEPS better than COSMO-SREPS for the short-range

• Mixing has a positive impact

• Use of multi-model boundaries has a positive impact even if models have different qualities

Average precipitation on 0.5 x 0.5 deg boxes > 1mm/6h

• With multi-model boundaries several models are needed to get a performance similar (or better) to a downscaling from a well constructed ensemble (like EPS)

COSMO-SREPS

COSMO-SREPS

COSMO-LEPS

COSMO-LEPS

SMO

- Generally COSMO-LEPS outperforms COSMO-SREPS
- The multi-model approach for i.c. and b.c. proves valuable even if model with different qualities are used
- For the multi-model approach to be effective, several models are needed to get a performance similar (or better) to a downscaling from a well constructed ensemble (like EPS)
- With only 3 global models providing initial and boundary conditions, the scores increase after 8 members is very limited
- the scores of both ensembles saturates around ensemble size 13-14
 - with a 16-member downscaling of the EPS we are already at the maximum attainable skill (in the short-range)

- Stop running the extra COSMO-SREPS members (nested on the same sets of IC and BC but with different physics)
- merge the 16 COSMO-LEPS runs with 4 COSMO runs nested on available deterministic global model

COSMO-SREPS suite set-up

	member	fathe	r itype_conv		tur_len	pat_len	rlam_heat	rat_sea	crsmin
	1	ifs		0	150	500	1	20	150
	2	ifs		1	1000	500	1	20	150
	3	ifs		0	500	500	0.1	20	200
	4	ifs		1	500	500	1	1	150
	5	ifs		0	500	2000	1	20	150
	6	gme		0	500	500	0.1	20	150
	7	gme		0	500	500	1	1	200
	8	gme		0	500	500	10	20	150
	9	gme		0	1000	500	1	20	150
	10	gme		0	150	500	1	20	150
	11	gfs		0	500	500	10	20	150
	12	gfs		0	500	2000	1	20	150
	13	gfs		0	500	500	1	60	150
	14	gfs		0	500	500	1	60	50
	15	gfs		0	500	500	1	20	50
	16	ifs		0	500	500	1	20	150
			convection scheme:		maximal turbulent	length scale of thermal	scaling factor of	ratio of Iaminar	minimal stomata
			0 Tiedtke		length scale	surface patterns	the laminar laver depth	scaling factors for	resistance
			1 Kain-Fritsch	۱				heat over se	D