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3D model dynamical core

Main characteritics

Hybrid vertical coordinate based on height

Finite differences in the vertical

Covariant formulation

Spectral discretization in the horizontal

Semi-implicit time discretization

Eulerian or semi-Lagrangian advection
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Euler equations for the dry air case

Euler equations

dv

dt
+RT ∇q +∇φ = F

dr

dt
+

R

Cv
(∇ · v) =

Q

Cv T
dq

dt
+
Cp

Cv
(∇ · v) =

Q

Cv T

Prognostic variables are q = ln p, r = lnT and v = (u, v, w)

T is the temperature, p the pressure v the velocity vector, R is the gas constant for dry air, Cp the specific heat

capacity of dry air at constant pressure, Cv the specific heat capacity of dry air at constant volume, F(t, x, z) is

the diabatic momentum forcing, Q(t, x, z) the heat per unit mass and unit time added to the air, φ(z) = gz the

geopotential, ∇φ the gradient of geopotential, ∇q the gradient of the logarithm of pressure and ∇ · v the

divergence of the velocity
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Prognostic variables

Why q ≡ ln p and r ≡ lnT?

Ideal state equation is linear in q, r and ln ρ

q = r + ln ρ+ lnR

Prognostic equations for q and r are linear in prognostic
variables in the adiabatic case and have the same forcing
terms

dr

dt
+

R

Cv
(∇ · v) =

Q

Cv T

dq

dt
+
Cp

Cv
(∇ · v) =

Q

Cv T

For a given time and spatial discretization of q̇, ṙ and ∇ · v

dq

dt
−
dr

dt
=

d

dt
(q − r)⇒

d ln ρ

dt
+∇ · v = 0
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Model coordinates

Cartesian (x, y, z) coordinates are transformed into model
coordinates (X,Y, Z)

Vertical domain is Z ∈ [0, 1] and the horizontal domains are
X ∈ [−1, 1] and Y ∈ [−1, 1].

The spatial domain in Cartesian coordinates is bounded by a
rigid top at z = HT and a rigid bottom at z = HB(x)
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Domains and grids of physical and model spaces

Representation of the grid
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Covariance

The grid in the model coordinates is regular and it is not in
Cartesian coordinates

The relationship between both coordinates is analytical and
constant in time

The model is covariant in the sense that all the objects are
expressed in model coordinates

The contravariant velocity is chosen as prognostic variable instead
covariant velocity because boundary conditions are simply
W (X,Y, 0, t) = 0 and W (X,Y, 1, t) = 0

Following differential geometry the covariant metric tensor in the
new coordinates is all what is needed to express differential
operators as divergence, gradient and curl
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Metric tensor

The metric tensor G in the model coordinates is obtained with
the help of the Jacobian of the coordinate transformation and
the metric tensor in Cartesian coordinates which is the identity

G = JT J
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Differential operators

Differential operators are calculated from the metric tensor and its inverse
(Gij , and Gij) and the Christoffel symbols Γijk

Γijk =
1

2
Gim

(
Gmj

∂Xk
+
Gmk

∂Xj
−

Gjk

∂Xm

)
Divergence

∇ · v =
1

| detG|
1
2

∂

∂Xj

(
| detG|

1
2Uj

)
Gradient

(∇f)i = Gij
∂f

∂Xj

Covariant derivative

(∇uv)i = Uj
∂V i

∂Xj
+ ΓijkU

jV k
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Geodesic, parallel transport
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For the semi-lagrangian advection parallel transport is used for calculating
the difference between contravariant vectors at the departure and arrival
points

The trajectory is calculated using a geodesic curve corresponding to the
covariant metric tensor

In this way the semi-lagrangian scheme has a full covariant formulation,
in particular the physical velocity components are not used
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Vertical discretization

A 2D VFE version has been coded (paper accepted for
publishing at QJRMS, Simarro and Hortal)

Here a 3D vertical finite differences (VFD) version is presented

The prognostic variables are all in full levels except the
contravariant vertical velocity which is in half levels plus two
boundary levels where it is zero

All the vertical discretization is second order, including those
levels near the boundaries
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Vertical operators

Basically 4 operators are defined

DZ finds the vertical derivative in full levels and the result is
placed in half levels

D̂Z finds the vertical derivative in half levels considering that
the variable is zero at the boundaries and the result is placed
in full levels

IZ finds the vertical linear interpolation from full levels to half
levels

ÎZ finds the vertical linear interpolation from half levels to full
levels considering that the variable is zero at the boundaries
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Semi-implicit time discretization

The semi-implicit formulation follows closely the formulation
used in ALADIN with the mass-based vertical coordinate

The linear model is around an isothermal hydrostatic balanced
atmosphere at rest

A flat orography is used in the reference state instead of a
constant hydrostatic pressure
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Linear coordinates

For the linear system another coordinate transformation is
needed which is horizontally uniform

From this transformation a linear metric tensor G∗ is
obtained. Consequently the differential operators of the linear
model also change.
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3TL semi-implicit scheme

A 3TL level scheme is represented by the following equation

Xn+1 −Xn−1

2∆t
= M(Xn)− L(Xn) +

1− ε
2

L(Xn−1) +
1 + ε

2
L(Xn+1)

M is the non linear model and L the linear model

ε is a decentering factor which increases stability

X = (U,V,W, r,q) is the state vector

The linear system is solved for Xn+1 in the spectral space
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Linear model

∂U

∂t
+
RT ∗

m2
X

DX q = 0

∂V

∂t
+
RT ∗

m2
Y

DY q = 0

∂W

∂t
+
RT ∗

m2
Z

DZ q− g

mZ
IZ r = 0

∂ r

∂t
+

R

Cv

(
DX U + DY V + D̂Z W

)
= 0

∂ q

∂t
+
Cp
Cv

(
DX U + DY V + D̂Z W

)
− mZg

RT ∗
ÎZ W = 0

m2
X , m2

Y and m2
Z are the diagonal elements of the linear metric tensor
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Structure equation

The following structure equation is obtained, which is similar
to the structure equation of the ALADIN model(
I− β2c2∗

(
D2

X + D2
Y + LZ

)
− β4c2∗N

2
∗ (D2

X + D2
Y)TZ

)
Wn+1 = RC

where LZ and TZ are vertical operators which contains
vertical derivatives and linear interpolations operators and the
constants are

c2∗ =
Cp

Cv
RT ∗

N2
∗ =

g2

CpT ∗

H∗ =
RT ∗

g

β = (1 + ε) ∆t
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Differences with the mass based vertical coordinate

Contrary to the case of the mass-based vertical coordinate no
constraints have to be fulfilled by the vertical operators when
deriving the structure equation

There is not a X term in the divergence due to the use of the
contravariant vertical velocity

The boundary conditions for the contravariant vertical velocity
are included in the vertical operators and are automatically
fulfilled

A disadvantage is that the decentering factor must be greater
than zero for achieving a similar range of stability (according
to the SBH method) than the one obtained with the
mass-based coordinate
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Test

Following test have been done among others

Atmosphere at rest with inversion layer (Klemp, 2011)

Inertia-gravity wave test (Klemp and Skamarock, 1994)

3D flow over a hill (Smith, 1980)

Conservation of potential vorticity

Configuration

Decentering factor is ε = 0

Reference temperature is T ∗ = 350K

In some test there is an absorber layer in the upper part of the
domain to avoid the reflection of gravity waves
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Rest atmosphere test

Atmosphere at rest test from Klemp (2011)

Consist of an atmosphere at rest with a horizontally
homogeneous thermodynamic sounding and an orography
described in Schär (2002)

Although the atmosphere is initially in equilibrium at rest an
artificial circulation appears during the integration due to
numerical pressure gradient errors

In Klemp (2011) it is used the model described in Klemp et al
(2007) with a conservative time-explicit method

The Gal-Chen (1975) vertical coordinate produced artificial
circulations with maximum vertical velocities of 7ms−1

More sophisticated vertical coordinates results in smaller
spurious circulations



Introduction Covariant formulation Semi-implicit Tests Conclusions

Rest atmosphere test: configuration

Configuration

Constant stability with an inversion layer: N = 0.01 s−1

except N = 0.02 s−1 from 2 km to 3 km height

Schäer mountain: H0 = 1 km, a = 5 km and b = 4 km

HB(x) = H0 exp(−x
2

a2
) cos2(

πx

b
)

Coarse resolution: ∆x = ∆z = 500m

Gal-Chen vertical coordiante and top placed at 20 km

Diffusion coefficient: 15m2s−1

No vertical sponge zone and cyclic conditions in the horizontal

Time step ∆t = 10 s
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Rest atmosphere test: maximum vertical velocities

Atmosphere is initially in equilibrium at rest but artificial
circulation appears during the integration due to numerical
pressure gradient errors

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

time (h)

m
a
x
im

u
m

 v
e
rt

ic
a
l 
v
e
lo

c
it
y
 (

m
/s

)

Maximum vertical velocity during the first 5 hours



Introduction Covariant formulation Semi-implicit Tests Conclusions

Rest atmosphere test: potential temperature distortion

θ isolines are initially horizontal and they are slightly distorted
by the spurious circulations
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Inertia-gravity waves test

Test case found in Skamarock and Klemp (1994)

There the efficiency and accuracy of the Klemp-Wilhelmson
time splitting technique is explored and a propagating
inertia-gravity wave is simulated in a Boussinesq atmosphere
with constant stability parameter in a periodic channel with
solid, free-slip upper and lower boundaries

The waves are produced by an initial potential temperature
perturbation where a small amplitude ∆θ0 = 0.01K is chosen
for quantitative comparisons with the analytic solutions of the
linearized equations

θ(x, z, 0) = ∆θ0
sin (πz)

1 +
(
x−x0
a

)2
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Inertia-gravity waves test: configuration

Configuration

Constant stability parameter N = 0.01 s−1

Upper boundary at HT = 10 km

Perturbation half width is a = 5 km

Initial horizontal velocity is U = 20ms−1

Horizontal and vertical resolutions are 1000m

Time step is ∆t = 6 s.
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Inertia-gravity waves test: results

The numerical solution for θ at 3000 s are similar to the
analytical solution, although there is a vertical movement
which is not present in the linear Boussinesq solution
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Linear 3D wave test

Smith (1980) found linear solutions of steady flows which are
used here to compare with the nonlinear model solutions

Consider

steady-state small-amplitude stratified Boussinesq flow

adiabatic, inviscid and nonrotating

uniform basic velocity U and Brunt-Vaisala frequency N

three dimensional topography HB(x, y)

Then the vertical displacement η(x, y, z) is given by

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
∂2

∂x2
η +

N2

U2

(
∂2

∂x2
+

∂2

∂y2

)
η = 0
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Linear 3D wave test: configuration

Orography: H0 = 10m and a = 5 km

HB(x, y) =
H0(

1 + x2+y2

a2

) 3
2
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Linear 3D wave test: configuration

Basic state

u = 10ms−1 and N = 0.01s−1

Grid and resolution

Domain: 64× 64 grid points in the horizontal and 40 levels

Resolution: ∆x = ∆y = 2km and ∆z = 500m
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Linear 3D wave test: linear solution

Linear vertical velocity at level 4 following Smith (1980)
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Linear 3D wave test: linear solution

Linear vertical velocity at levels 1, 4, 10 and 20
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Linear 3D wave test: non linear solution

Configuration

Same grid used for the linear solution

Top at 20 km

Time step: ∆t = 20 s, ε = 0

Reference temperature: 350K

Cyclic conditions in the horizontal dimensions

Sponge layer at the highest 4 km of the domain

Results presented at T = 30000 s

Atention!

Linear and non linear solutions must be not equal as they
obey different equations
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Linear 3D wave test: non linear solution

Linear and non linear vertical velocities at levels 1 and 4
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Linear 3D wave test: non linear solution

Linear and non linear vertical velocities at levels 10 and 20
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Potential vorticity conservation

Preliminary test to evaluate potential vorticity conservation

A flow with constant U = 10ms−1 and N = 0.01s−1 passes
around an 3D Agnesi hill a = 5 km and H0 = 500m.

The flow has zero potential vorticity upstream the hill and
should conserve this value in an adiabatic flow

The potential vorticity is calculated at T = 3200 s

Two cases: adiabatic case and non adiabatic with heat source.
The heat source is proportional to the orography and constant
with height, therefore the hill acts like a chimney
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Potential vorticity conservation

How to find potential vorticity

The covariant expression for the potential vorticity is

PV =
1

ρ|G| 12

(
θX

(
V̂Z − ŴY

)
+ θY

(
ŴX − ÛZ

)
+ θZ

(
ÛY − V̂X

))
where Û , V̂ and Ŵ are the covariant components of the velocity

Vertical and horizontal derivatives are calculated with respect
model coordinates
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Potential vorticity conservation

Vertical velocity at 2.5 and 5.0 km height (adiabatic flow up)
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Potential vorticity conservation

Potencial vorticity at 2.5 and 5.0 km height (adiabatic flow up)
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Conclusions

A 3D VFD model has been coded an tested

The scheme is robust

This formulation have some advantages in front of the mass
based vertical coordinate

A preliminary potential vorticity test has been done
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Questions (?) and answers (!)

Work already done in the IFS/HARMONIE code?

Preparing inital data in Z coordinate
Vertical operators
Part of the modifications in the semi-implicit solver

VFE or VFD?

robustness(VFD) > robustness(VFE)
VFD to be implemented first

LAM/Global?

First implemented in Global to avoid lateral boundaries
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Thank you for your attention!
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