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News from the small planet

Test cases

@ Moist orographic waves
(Used in Meso-NH for high
order advection tests)

@ Tropical Cyclones (Reed and
Jablonowski, 2011)

@ Splitting storms (Weisman
and Klemp, 1982, 1984)
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NH dynamics and prognostic microphysics in the IFS

Is the current IFS able to simulate deep convective systems?

At 1 km and 3 km resolutions, the development of split storms in
unidirectional and rotational wind shear environment simulated with the
IFS is qualitatively in good agreement with the original results of Weisman
and Klemp (1982, 1984) and with more recent results obtained with the
mesoscale models AROME and Meso-NH (Verrelle, 2011).

For more details,
visit my poster
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Eulerian transport scheme for interpolations in a
semi-Lagrangian transport scheme

Problem: reconstruction of a field v at departure point O knowing
only values at neighbouring grid points M; using an Eulerian
algorithm (Smolarkiewicz and Pudykiewicz, 1992)

Interpolation methods used for Arbitrary Lagrangian Eulerian (ALE,
unstructured grid)) codes in the industry, aerospace and military
applications

@ move the depature points O to their nearest
grid point My using the MPDATA formalism.

@ displacement of the fluid at constant real
time t along “pseudo-trajectories” from O
to M, at a constant pseudo-velocity equal to
the distance between O and M divided by a
pseudo-time unit.
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MPDATA for SL interpolations

1D transport - Constant wind advection - CFL< 1

SL with Eulerian interpolation
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@ The pseudo-displacement is always less than Ax: CFL< 1

o MPDATA formalism is equivalent to a Taylor expansion in space and
pseudo-time around the nearest grid point at departure time.

@ Order 1 expansion is equivalent to linear interpolation (donor scheme).

v
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1D transport - Constant wind advection - no filter

Shape
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Without monotonous filter,
@ Eulerian MPDATM = SL

with MPDATM interpolation

@ Undershoot/overshoot but
global conservation with all
methods
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1D transport - Constant wind advection - no filter

Shape
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@ SL scheme gives the same
results with CFL= 0.75 and
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1D transport - Constant wind advection - Simple min/max
filter

Well resolved shape Poorly resolved shape
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MPDATA for SL interpolations:
First implementation in the IFS

2D advection of a well resolved Gaussian shape

Cubic+min/max filter

@ second order

@ monotonous filter: min/max
of two nearest grid point
(LQM type)

@ solid body rotation

Initial field

v .

4
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3D adiabatic transport

Total mass O3

10 day evolution

no chemistry
adiabatic

no diffusion scheme
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Total mass cloud content
10 day evolution
adiabatic

no diffusion scheme
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3D adiabatic transport Cloud content:

Os: very spotty at day 0
large scale structures at day 0 day 10 - Cubic and MPDATA
day 10 - Cubic and MPDATA

v
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Flux Corrected Transport

Eulerian FCT

Flux limitation with respect to what is available at the grid point upstream
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1D transport - Constant wind advection - FCT
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Summary

o MPDATA formalism has been introduced in the IFS as a new
interpolation method for the SL.

@ Results with the 2nd order MPDATM scheme without monotonous
filter or with a simple monotonous filter are generally equivalent or
worse than cubic without or with the same filter.

@ For 1D advection with constant wind, MPDATM Eulerian with FCT
= SL with MPDATM interpolation and FCT: good shape
conservation, perfect conservation

@ FCT control the computation for the all “unstructured” grid of

departure points: generalisation to real atmospheric flows? feasibility
in the IFS?
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