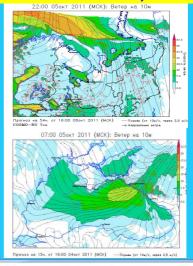
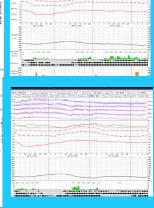
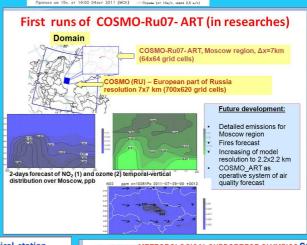

RUSSIAN HYDROMETEOROLOGICAL SERVICE (ROSHYDROMET)


ERATIONAL FORECAST SYSTEM COSMO-RI



April 13, 2011 Roshydromet decided to implement the system of mesoscale weather prediction COSMO-RU in operational practice as a base for use in Hydrometeorological Centre of Russia and Roshydromet prognostic offices.




4 times per day (for 00, 06, 12, 18 h UTC. 4h .15 min. after the observation times) the system COSMO-RU07km: -forms 662 weather forecast maps and 400 meteogramms - send them to the weather forecaster centers of Roshydromet and ftp-servers; - allocates the GRIB-products on a ftp-servers and in the data bases (about 20 GB).

COSMO-RU-14-EPS: Start of researches				
main features 28 members Different variants of model	applied perturbations PERTURBATION	PARAM ETER RANGE	DEFAULT VALUE	USED VALUES
physics, numerical schemes for model	DYNAMICS			
dynamics and boundary conditions schemes • Ensemble members: COSMO-RU model, grid: 350×310×40, ΔX=Δy=14 km	Numerical scheme		Leapfrog	Leapfrog, 2 nd order Runge- Kutta, 2 nd order Runge- Kutta TVD schemes
Control experiment: COSMO-RU model, Δx=Δy=7 km	Boundary conditions scheme		Implicit	Implicit, explicit
• Forecast length: 78 hours	PHYSICS			
Computer: SGI Altix 4700 Itanium 2, 1.66 GHz, NUMALink, 1664 PEs, Peak 11 Tflops	Deep convection parameterization scheme		Tiedtke	Tiedtke, <u>Kain</u> -Fritsch
Performance: 256 CPUs, forecast ready in 7 hours 1 run / day, 00 UTC	Length scale of sub-scale surface thermal patterns over land (pat_len)	0– 10000 m	500	0, 500, 10000 (like used in COSMO- SREPS [Marsigli, 2009])
	Scaling factor for the thickness of the laminar boundary layer for heat (rlam_heat)	0.1- 10.0	1.0	0.1, 1.0, 10.0 (tested in COSMO-SREPS and CSPERT projects [Marsigli, 2009])
	T D			

of Roshydromet in the SRNWP Data Exchange Programme EUMETNET

of participation

The necessary preliminary jobs for organization of activities on Valday observatory were carried out

VALDAY OBSERVATIONS Precipitation polygon

Measured parameters: daily runoff on 9 stations of river <u>Polomet</u> and its tributaries, maximal snow survey

Meteorological station

Measured parameters

precipitation, snow height and water content on the forest, evaporation **Gradient measurements**

COSMO METEOROLOGICAL SUPPORT FOR OLYMPICS SOCHI-2014 on the framework WMO project FROST

COSMO Perspective Project CORSO: Consolidation of Operation and Research results for the Sochi

Olympic Games

CORSO main goal: To develop and improve To develop and improve the complex operational high resolution short-range forecast technology for mountain areas for winter weather events on base of COSMO researches (in example of Sochi area)

CORSO Participants:

Italy, Germany, Russia, Switzerland

MAIN TASKS:

Downscaling postprocessing development FDP: Operational technology of local specific weather

4. Development of forecast verification for "Sochi-201