

Progress and plans on observations and other features in Météo-France's assimilation systems

C. Fischer

EWGLAM/SRNWP

Content

- Arpège 4D-VAR, Arpège ensemble assimilation (AEARP) & outlook
- Aladin models, Arome-France & outlook

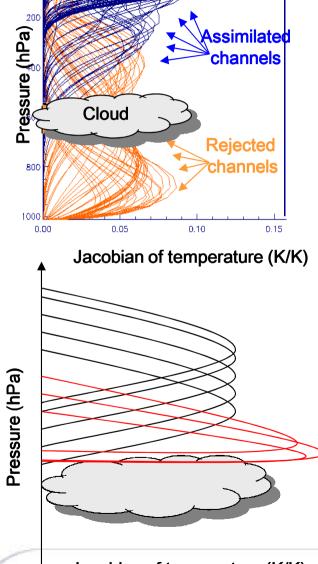
Part 1

AEARP & ARPEGE

EWGLAM/SRNWP

Main changes introduced in operations (September 25, 2012)

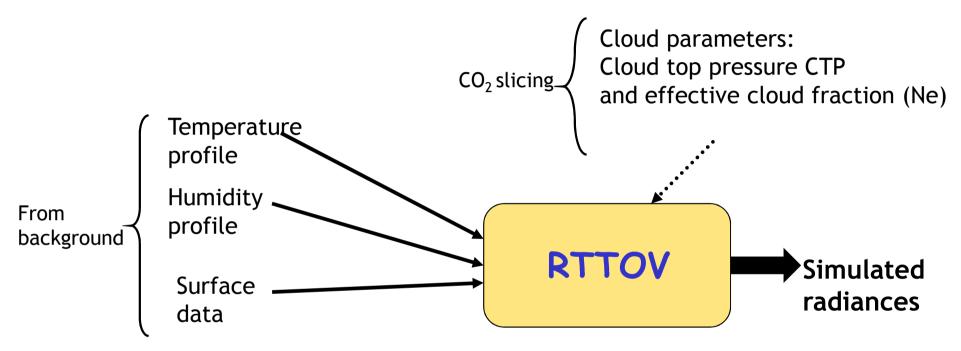
- CY37T1_op1
- Returned σo's: AMSU-A, GPS-RO, TEMP, wind profilers, AIREP & ASCAT winds;
- Cloud (and rain) affected IASI radiances: CO2-slicing;
- Increase of number of observations: IASI (tropospheric channels over sea, stratospheric channels everywhere), EARS/IASI, ground-based GPS from EGVAP;
- Assimilation of RARS/ASCAT winds;
- Ensemble DA system: inflation of B(variances) for model error;
- adaptations in convection scheme; Arpège time-step reduced to 514 s & slight increase of horizontal diffusion;



Assimilation of cloud-affected (IASI) radiances

History:

- 1. A good cloud detection (pixel-wise) is necessary
- 2. Reject cloud-affected radiances (Mc Nally & Watts 2003) and only assimilate clear-sky
- 3. Evaluate simple cloud parameters (Cloud Top Pressure, cloud fraction) assuming one single cloud layer
- Assimilation for clouds between 950 hPa and 600 hPa over sea:
 - Information is in the Troposphere
 - If cloud detection or parameter evaluation was wrong, then the impact remains limited (because of the many other sources of observations in the Troposphere)
 - Assessing the nature and characteristics of the surface remains challenging
 - Many NWP models are not representing mid-level clouds very accurately
 - Clouds containing ice particles are difficult to model
- Operational for AIRS data in Arpège (Feb'09) and Arome (April'10)



Simulation of IASI cloudy radiances

Current radiative transfer model

CTP and Ne retrieved with CO₂ slicing

Limitations of CO2 slicing method: detection of low-level clouds and cirrus. Limitation of RTTOV: simplified cloud modelling : one single opaque cloud layer

EWGLAM/SRNWP Helsi

Assimilation of AIRS/IASI cloudy radiances

Method used for the assimilation of AIRS/IASI cloudy radiances affected by mid- to low-level clouds

Cloud parameters determined with CO2slicing Minimization of $F_{k,p}$

$$F_{k,p} = \frac{(R_{clr}^{k} - R_{obs}^{k})}{(R_{clr}^{K_{ref}} - R_{obs}^{K_{ref}})} - \frac{(R_{clr}^{k} - R_{cld}^{k,p})}{(R_{clr}^{K_{ref}} - R_{cld}^{k_{ref},p})}$$

Cloud top pressure:

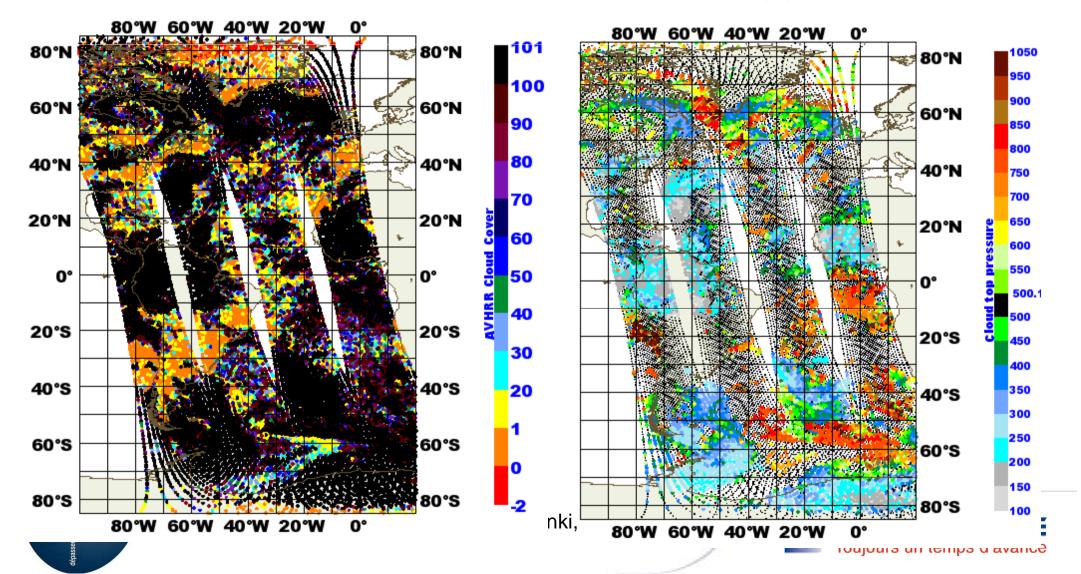
$$p_c = \frac{\sum p_{c,k} w_k^2}{\sum w_k^2}$$

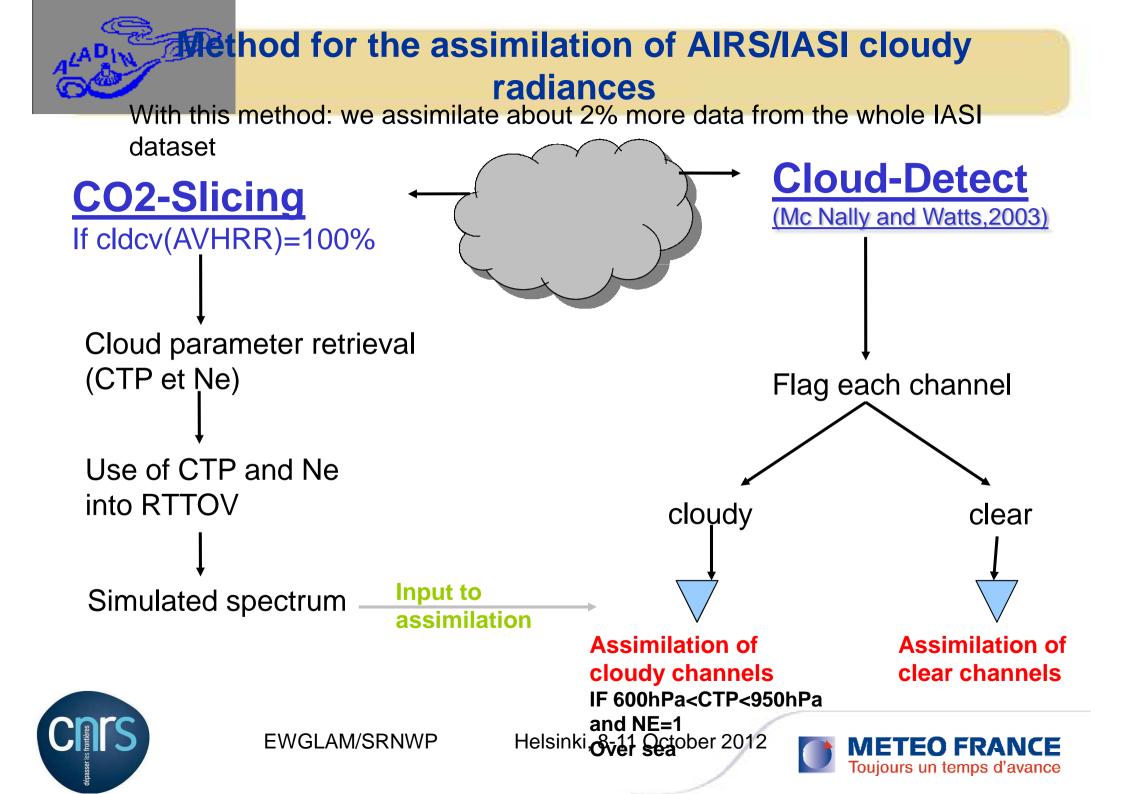
 $P_{c,k}$: pressure level minimizing $F_{k,p}$ W_k : derivative of $F_{k,p}$ wrt pressure Robs: observed radiance Rclr: clear-sky radiance simulated from the model Rcld: radiance with opaque cloud at pressure level p k= channel of the CO2 band Kref= reference channel (surface) = 917.31 cm-1 (AIRS) => CTP and Ne

Effective cloud emissivity

$$N_{\varepsilon} = \frac{(R_{clr}^{k_{ref}} - R_{obs}^{k_{ref}})}{R_{clr}^{k_{ref}} - R_{cld}^{k_{ref}}}$$

EWGLAM/SRNWP




Buse of the cloud cover from imager for the assimilation of cloudy IASI radiances Retrieval of cloud top pressure if cloud-cover(AVHRR)=100%

Example for 19 September 2010 at 00 UTC

AVHRR cloud cover

Cloud top pressure

GAEARP double (Assimilation d'Ensemble ARPège)

- ARPEGE changes are included in the AEARP 4D-VARs
- inflation of dispersion sizes, in order to take into account model error. The inflation is of a factor about 1.2 (leading to an increase of spread by a factor 2 to 3, depending on field)

PEARP (Prévision d'Ensemble ARPège)

Adapted to changes in AEARP

EWGLAM/SRNWP

 Adapted to the changes in convection for those members using a convection closure based on humidity convergence.

(G. Desroziers, L. Berre, C. Labadie, L. Descamps)

Outlook for Arpège 4D-VAR

- Radiances over land (*on hold*)
- Cloud (and rain) affected radiances: assess benefit of model cloud water content for RTTOV-cloud
- Increase of number of observations: NPP/ATMS, NPP/CRIS, Metop-B data, Ocean-SCAT, Megha-Tropiques; geostationary (GOES & MTSAT) radiances;
- Revisited strategy for GPS ZTD blacklisting (allow more data to be assimilated);
- Start testing VarBC for GPS ZTD
- Simplified physics: convection and turbulence (stratiform precipitation and GWD already modified in 2010) - on hold -
- Ensemble DA system: feed wavelet structure function parameters
- Increase number of members in AEARP at constant total numerical cost
- Code system overhaul: towards object-oriented coding of the IFS/Arpège assimilation system (« OOPS ») => started with CY38

Part 2

Aladin Overseas & Arome-France

EWGLAM/SRNWP

Modifications in ALADIN

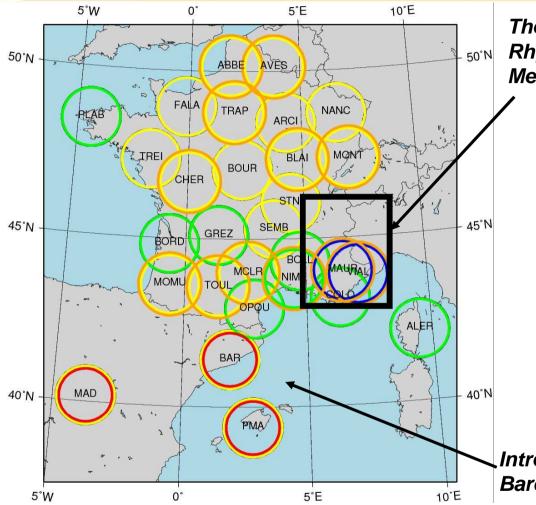
- ARPEGE changes included in the ALADIN models
- 4 Aladin 3D-VAR configurations:
 - France: stopped on March 27, 2012
 - La Réunion: cyclone warnings in the Indian Ocean area
 - Polynesia, New Caledonia, French Antilles & Guyana: coupling with IFS
- see also French national poster

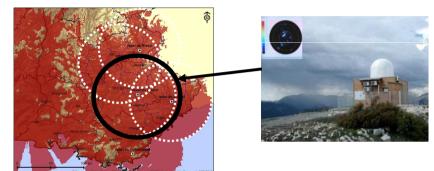
(G. Faure, F. Bouyssel, F. Taillefer)

Modifications in AROME and R&D aspects (Sept'12)

- ARPEGE observations changes are included in AROME-France
- assimilation of Doppler radial winds from Plabennec radar site; monitoring of D-winds from Grèzes and X-band from St-Maurel;
- assimilation of SEVIRI over land;
- Assimilation of AMSU-A at higher density (80km instead of 125km)
- assimilation of more buoys in the CANARI OI for SST

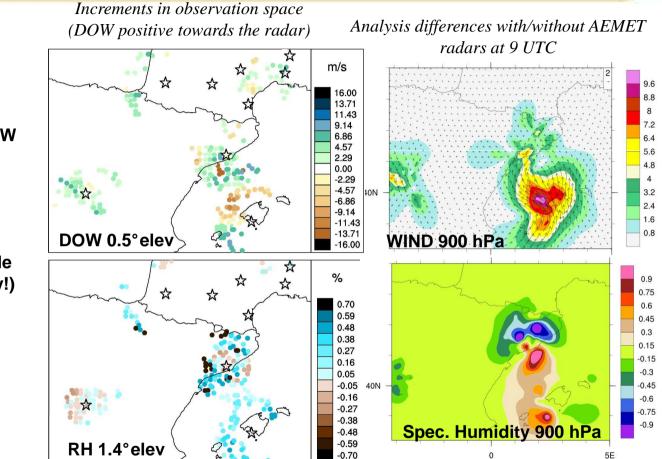
Use of GPS information in Arome-FR


- GPS ZTD are assimilated in Arome-FR (as well as Arpège)
- Expect more work on a dynamical selection of stations, using a more open blacklist (or a whitelist). Goal is to increase the volume of GPS data entering screening.
- Variational bias correction scheme for GPS data is coded in CY38 (by ECMWF). This is to be tested in MF's systems (GMAP and collaboration with Moroccan team)
- No work on R.O. nor tomography (some Research at GMME, *tbc*)



Changes in the radar network

There is a need for a radar coverage in this area: Rhytmme project (Hydrometeorological risks in Mediterranean mountainous: new X-band radars)



- 4 radars in 2013
- Mt-Vial currently cannot be used (poor quality for assimilation)
- Tests with Mt-Maurel

Introduction of the Spanish radars (Madrid, Barcelona, Palma de Mallorca)

16 French radars in C band (yellow circles) and 3 Spanish radars in C band (red circles). 8 in S band (green circles). 12 polarimetric radars (orange circles) from which 2 radars in X band (blue circles) EWGLAM/SRNWP Helsinki, 8-11 October 2012

Assimilation of radars from AEMET

Preliminary experiments considering radars from Madrid, Barcelona and Palma de Mallorca:

- 2 elevations for the moment (0.5° and 1.4°), 120 km ranges, double PRF, Z, DOW and QF
- PPIs in polar coordinates ($\delta r = 500m$, $\delta azimuth = 0.8$)
- non-meteorological clutters deduced from good signal using the Doppler spectrum (but not removed ! => possible ambiguity and bad quality of reflectivity!)

 \Rightarrow The whole processing chain has been validated and encouraging results have been obtained.

 \Rightarrow Tests in quasi-real time are planned in june/july in AROME WMED

EWGLAM/SRNWP

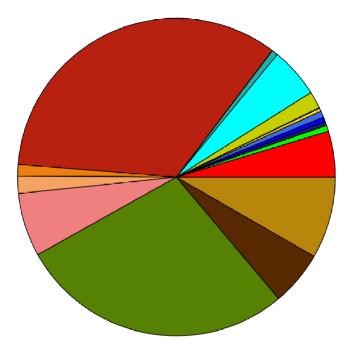
Impact of obs on analysis: DFS

- Regularly computed by our monitoring team (COMPAS), as a mean over all analyses of a day (8 for Arome-FR)
- DFS = Degrees of Freedom for Signal = statistical objective measure of the ability of an obs (group of obs) to modify the analysis:

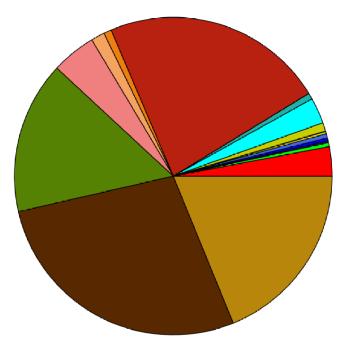
$$DFS = Tr\left(\frac{\partial(H\mathbf{x}^{a})}{\partial(\mathbf{y}^{o})}\right)$$
$$= Tr(\mathbf{HK})$$

- DFS are computed using perturbed analyses (e.g. from ensembles)
- If R is block-diagonal:

$$DFS_i = Tr(\Pi_i \mathbf{H} \mathbf{K} \Pi_i^{\mathrm{T}})$$



EWGLAM/SRNWP


Part des DFS par type d'obs analyses cut off AROME AROME France oper observations conventionnelles et satellites cumul du DFS sur la période 2011090700 - 2011090721 : 79471

GPS ground GPS sat SATOB	4.67%	AIRS IASI SEVIRI	0.06%	PILOT/PRF TEMP AIRCRAFTS	1.77% 6.46% 28.01%
ATOVS HIRS	0.43% 🔲	SCATT	0.62%	RADAR Vr	5.56%
ATOVS AMSU-A	0.46%	BUOY	0.02%	RADAR Hur	8.31%
ATOVS AMSU-B	0.66%	SYNOP/SYNOB/BADOME	34.03%	BOGUS	0.00%
SSMIS	0.33% 📃	SHIP	1.17%		

Non-rainy period of stats

Part des DFS par type d'obs analyses cut off AROME AROME France oper observations conventionnelles et satellites cumul du DFS sur la période 2011110300 - 2011110321 : 121916

GPS ground	2.99%	AIRS	0.04%	PILOT/PRF	1.39%
GPS sat	0.00%	IASI	0.87% 📕	TEMP	4.52%
SAT0B	0.40% 📃	SEVIRI	2.64%	AIRCRAFTS	15.50%
ATOVS HIRS	0.19%	SCATT	0.62%	RADAR Vr	27.57%
ATOVS AMSU-A	0.29%	BUOY	0.00% 💻	RADAR Hur	18.83%
ATOVS AMSU-B	n.44%	SYNOP/SYNOR/RADOME	22.68%	BOGUS	0.08%
SSMIS	0.23%	SHIP	0.79%		

Rainy period of stats

EWGLAM/SRNWP

Outlook for LAMs

- Experiments with 1-hourly cycles (RUC) : in progress
- Use of ensemble assimilation information, situation-dependent aspects
- New tests with « Jk » term (weak constraint towards coupling data)
- Heterogeneous B matrix: extended control vector to accommodate for different structure functions (in masked areas), Montmerle & Berre (QJRMS, 2010).
- Radar:
 - assess impact of windmill signals,
 - evaluate assimilation of X-band radars from the RYTHMME network,
 - radar data exchange within HYMEX,
 - sensitivity studies towards the inclusion of a total precipitating hydrometeor content in c.v.
- Assimilate more ground-based GPS (re-visit blacklisting & VarBC)
- Increase number of vertical levels in Arome-FR: this increase probably requires to also increase the vertical layout in RTTOV-levels;
- Aladin applications at MF: assess benefit of denser observations
- Code system overhaul: towards object-oriented coding of the IFS/Arpège assimilation system (« OOPS ») => started with CY38

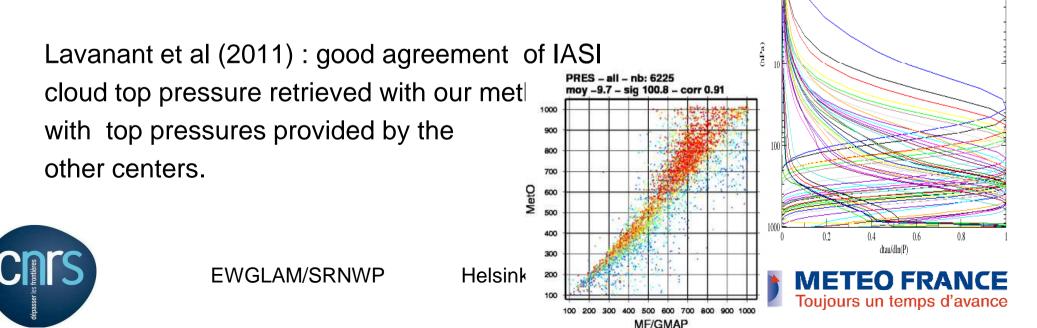
EWGLAM/SRNWP

Kiitos huomiota

(thank you for your attention)

EWGLAM/SRNWP

Added IASI cloudy observations



EWGLAM/SRNWP Helsink

Ashort summary about the assimilation of cloudy radiances

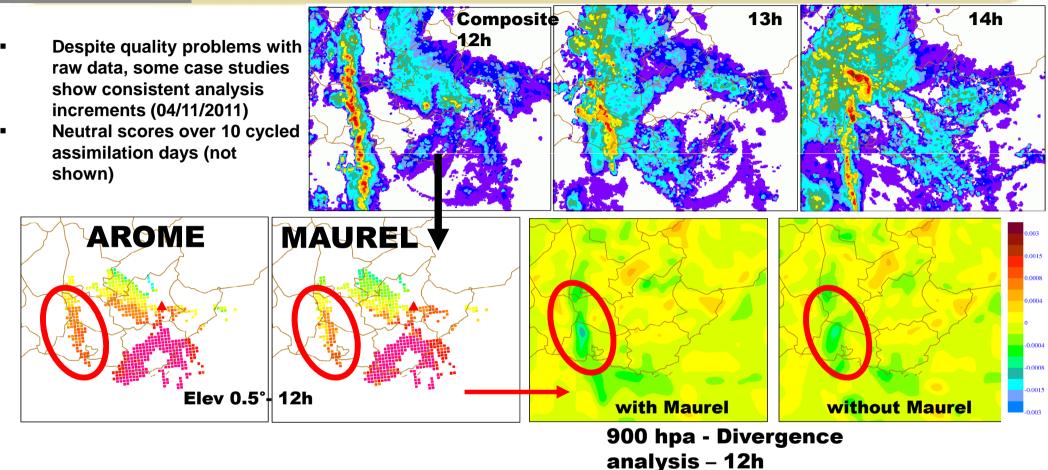
- Cloud parameters retrieved with CO2slicing method (Pangaud et al, 2009, MWR).
- Small positive impact of the AIRS cloud-affected radiance assimilation on the forecast skill.
- In operations since February 2009 for the global model and since April 2010 for the mesoscale model AROME.
- Same methodology applied for IASI as the one used for *i* parameters determined with CO2slicing (36 channels)

The RHYTMME project

Radial wind

- Triple PRF needed for unfolding velocity.
- Ratio of PRF very close to 1 to get high velocity required for assimilation in NWP. Provides erroneous unfolding with low PRF used for X-band. Strong median filter is needed. A new first guess quality check threshold is applied for X-band: 15 m/s instead of 20 m/s !

Reflectivity

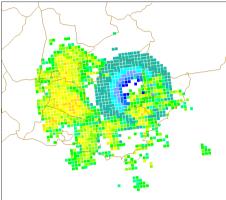

- Only the simple-polar reflectivity has been evaluated («Hitschfeld-Bordan » algorithm to correct reflectivity attenuation)
- Use of the differential phase φ_{dp} (to compute the Path Integrated Attenuation PIA) must still be evaluated.

The RHYTMME project: radial wind

 \Rightarrow Radial winds from Mt-Maurel monitored in AROME

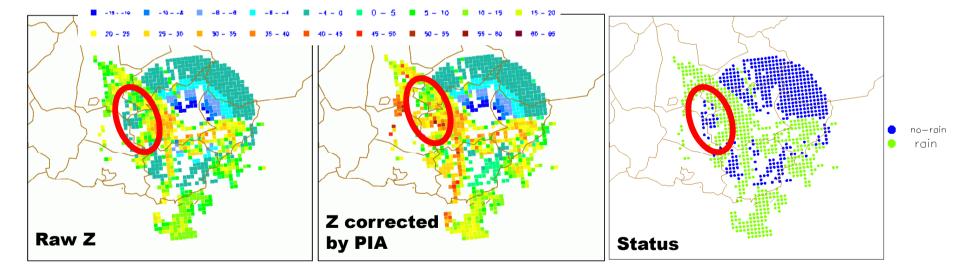
 \Rightarrow Next step: evaluation in real-time in AROME WMED

EWGLAM/SRNWP

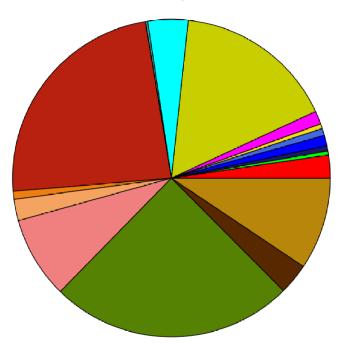


The RHYTMME project: reflectivity

Obs 0.5° Maurel

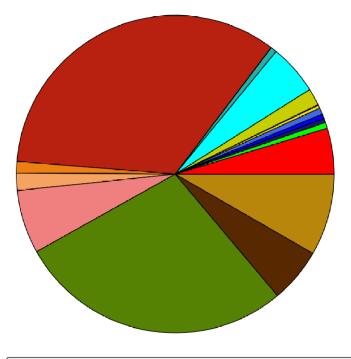

Specific humidity increments: level 4 2 (1530)

- New consistent information (04/11/2011 – 00h) in analysis increments
- But possible negative QPF scores (not shown)
- Neutral or slightly negative scores over 10 cycled assimilation days (not shown)



Cr

 \Rightarrow New assimilation tests with Path-Integrated Attenuation (PIA) information (dual polar) are underway: better reflectivity but loss of information in areas affected by signal extinction

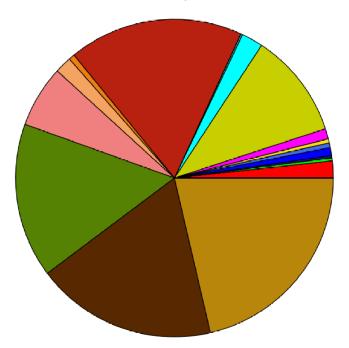

Impact of obs on Arome-FR analysis: no RR period

Proportions des nombres d'observations utilisées par type d'obs analyses cut off AROME AROME France oper observations conventionnelles et satellites cumul du nombre d'observations utilisées sur la période 2011090700 - 2011090721 : 209513

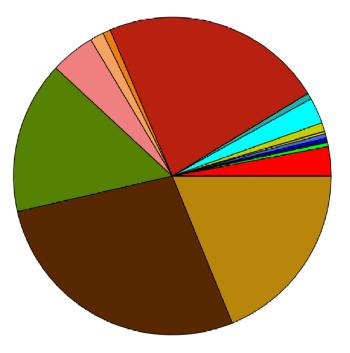
GPS ground 2.34% AIRS 1.35% F	PILOT/PRF 2.17%
GPS sat 0.00% IASI 16.41% I 1	EMP 8.35%
SATOB 0.40% SEVIRI 4.09% A	IRCRAFTS 24.79%
ATOVS HIRS 0.53% SCATT 0.23% F	ADAR Vr 3.16%
ATOVS AMSU-A 1.07% BUOY 0.01% F	ADAR Hur 9.39%
ATOVS AMSU-B 0.72% SYNOP/SYNOR/RADOME 23.69% E	80GUS 0.00%
55MIS 0.48% SHIP 0.82%	

Part des DFS par type d'obs analyses cut off AROME AROME France oper observations conventionnelles et satellites cumul du DFS sur la période 2011090700 - 2011090721 : 79471

_		_		_		
	GPS ground	4.67%	AIRS	0.06% 📃	PILOT/PRF	1.77%
	GPS sat	0.00%	IASI	1.73% 📃	TEMP	6.46%
	SATOB	0.61% 📃	SEVIRI	5.11%	AIRCRAFTS	28.01%
	ATOVS HIRS	0.43% 📃	SCATT	0.62%	RADAR Vr	5.56%
	ATOVS AMSU-A	0.46%	BUOY	0.02% 📃	RADAR Hur	8.31%
	ATOVS AMSU-B	0.66%	SYNOP/SYNOR/RADOME	34.03%	BOGUS	0.00%
	SSMIS	0.33% 📕	SHIP	1.17%		



EWGLAM/SRNWP


Impact of obs on Arome-FR analysis: rainy period

Proportions des nombres d'observations utilisées par type d'obs analyses cut-off AROME - AROME France oper observations conventionnelles et satellites cumul du nombre d'observations utilisées sur la période 2011110300 2011110321 : 280292

GPS ground	1./4%	AIRS	1	.05%	PIL01/PRF	1./1%
GPS sat	0.00%	IASI	10	.73%	TEMP	6.29%
SATOB	0.29%	SEVIRI	2	.19%	AIRCRAFTS	15.74%
ATOVS HIRS	0.25%	SCATT	0	.18%	RADAR Vr	18.40%
ATOVS AMSU-A	0.81%	BUOY	0	.00%	RADAR Hur	21.36%
ATOVS AMSU-B	0.49%	SYNOP/SYNOR/RADOME	17	.77%	BOGUS	0.00%
SSMIS	0.41%	SHIP	0	.60%		

Part des DFS par type d'obs analyses cut-off AROME - AROME France oper observations conventionnelles et satellites cumul du DFS sur la période 2011110300 2011110321 : 121916

GPS ground	2.99%	AIRS	0.04%	PILOT/PRF	1.39%
GPS sat	0.00%	IASI	0.87% 📃	TEMP	4.52%
SATOB	0.40% 📃	SEVIRI	2.64%	AIRCRAFTS	15.50%
ATOVS HIRS	0.19% 📃	SCATT	0.62%	RADAR Vr	27.57%
ATOVS AMSU-A	0.29%	BUOY	0.00%	RADAR Hur	18.83%
ATOVS AMSU-B	0.44%	SYNOP/SYNOR/RADOME	22.68%	BOGUS	0.00%
SSMIS	0.23%	SHIP	0.79%		

EWGLAM/SRNWP

