

ENDGame

Nigel Wood, Dynamics Research and an ever increasing cast of players...

- Build on foundations of New Dynamics
- Aims are:
 - Improved robustness
 - Improved accuracy
 - Maintain/improve conservation
- While maintaining/improving efficiency

\Rightarrow Accuracy/Robustness/Scalability

- Evolution of New Dynamics
 - > Same equation set & variables (θ - π)
 - Same horizontal staggering (Arakawa C-grid)
 - Same vertical staggering (Charney-Phillips)
 - Semi-implicit semi-Lagrangian
- Physics and DA unchanged

- Improved (iterative) solution procedure
 More implicit, approaching Crank-Nicolson
 Reduced off-centring (alpha's)
- Resolves number of New Dynamics issues:
 - Non-interpolating in the vertical for theta advection Removed
 - Explicitly handled vertical Coriolis terms Removed

Extrapolated trajectory calculation Removed
Improved robustness and accuracy

- Iterated approach
 - Allows much simpler Helmholtz problem (7 point stencil cf. 45 point)
 - Much simpler (red/black) preconditioner => greatly reduced communications
- \Rightarrow Improved scalability
- Same SL advection for all variables
 - Cf Eulerian continuity equation + SL in New Dynamics
- \Rightarrow Improved robustness

Coriolis terms based on mass flux variables
 > improved Rossby mode propagation
 > Improved accuracy

No polar filtering or horizontal diffusion
 Control near lid and poles achieved by implicit damping of w

 \Rightarrow Improved scalability and accuracy

- V-at-poles (cf. u, w and all scalars)
 - Not solving Helmholtz problem at singular point of grid!
 - And improved energy properties
- \Rightarrow Improved scalability and accuracy

V-at-poles vs. U-at-poles

A "trivial" change to model grid!

© Crown copyright Met Office

ENDGame has additional "zeroth" model level, but not yet being used

Some results...

Accuracy: Aquaplanet EKE EG Max = 417

lan Boutle

EG@N48 ≈ ND@N96

Temperature (Kelvin) at Station Height: Surface Obs Northern Hemisphere (CBS area 90N-20N) Equalized and Meaned from 8/6/2008 12Z to 6/8/2009 12Z

Forecast Range (hh)

Forecast Range (hh)

Vertical velocity at 41km N320

Simon Vosper

AMIP climate simulations JJA precipitation

ENDGame ppn for JJA a) Precipitation for jja ALWYH: ENDGame $000 \qquad 0 \qquad 0 \qquad 00E \qquad 180$ Area-weighted mean = 3.10 $0.1 \quad 0.5 \quad 1 \quad 2 \quad 5 \quad 10 \quad 20 \quad 40$

c) Precipitation for jja ALWYO: NewDynamics minus GPCP2 precip (1979-1998)

OON Dan Copsey 90S 90S 180 90W 0 90E 180 180 90W 0 90E 180 Area-weighted rms diff = 2.27Area-weighted rms diff = 1.92 **ENDGame** has -2 -0.50 0.5 2 10 -10 -10 -2 reduced RMS New Dynamics biases ENDGame biases 0815 © Crown copyright Met Office error

ENDGame – New Dynamics b) Precipitation for jja ALWYH: ENDGame minus ALWYO: NewDynamics

d) Precipitation for jja ALWYH: ENDGame minus GPCP2 precip (1979–1998) Increased precipitation over India, improving the model

> Decreased precipitation over the Indian Ocean and near Central America, improving the model

New Dynamics

ENDGame

Simon Vosper

(1 node=32 processors)

- Simplified and improved a posteriori conservation (Zerroukat 2010)
- SLICE:
 - Semi-Lagrangian Inherently Conserving and Efficient advection scheme (Zerroukat et al QJ 2002/04) =
 - SL finite-volume scheme
 - Made efficient by applying a cascade approach
 - le a flow dependent dimensional splitting

Still evaluating/improving...

- Currently:
 - Development of an ENDGame package (GA5)
 - ENDGame being trialled and tested in various systems
- Spring 2013:

➢ Freeze GA5 with ENDGame in it

- Early 2013 start full EPS and hybrid trialling
- Aim to implement Autumn 2013...?

Thank You!

Questions?

- Wave equation: $dF/dt = i\omega F \Rightarrow F(t+\Delta t) = F(t)^* exp(i\omega\Delta t)$ $|F(t+\Delta t)/F(t)|^2 = 1$
- Semi-implicit:

 $F^{n+1}-F^n = i\omega\Delta t [\alpha F^{n+1} + (1 - \alpha)F^n]$

• $\alpha = 1 \Rightarrow$

 $|F(t+\Delta t)/F(t)|^2 = 1/[1+(\omega \Delta t)^2] << 1$

• $\alpha = 1/2 \Rightarrow$

 $|F(t+\Delta t)/F(t)|^2 = 1$

Met Office

Dx/Dt = U

 $DF/Dt = N(F) + P_{S} + P_{F}$

Target SISL scheme:

 $X_A - X_D = (\Delta t/2)[U^{n+1} + U^n(X_D)]$

 $\mathsf{F}^{n+1}\text{-}\mathsf{F}_{\mathsf{D}} = (\Delta t/2)[\mathsf{N}(\mathsf{F}^{n+1}) + \mathsf{N}(\mathsf{F}^{n})_{\mathsf{D}}] + \Delta t\{\mathsf{P}_{\mathsf{F}}(\mathsf{F}^{n+1}) + [\mathsf{P}_{\mathsf{S}}(\mathsf{F}^{n})]_{\mathsf{D}}\}$

Rewrite exactly as:

$$\begin{split} [I- (\Delta t/2)L(F^{\text{Ref}})]F^{n+1} &= \{F^n + \Delta t[N(F^n)/2 + P_S(F^n)]\}_D \\ &+ (\Delta t/2)[N(F^{n+1}) - L(F^{\text{Ref}})F^{n+1}] + \Delta tP_F(F^{n+1}) \end{split}$$

