

Review JWGFVR 5th Verification workshop & SRNWP-V programme

Clive Wilson – Expert Team on diagnostics, validation & verification

With thanks to Marion Mittermaier, Rachel North, Matthew Trueman, Ric Crocker 34th EWGLAM/19th SRNWP meetings –Helsinki 8-11 October 2012

- WWRP/JWGFVR Cloud verification recommendations
- SRNWP-V programme
 - Progress & update
 - WebEx ET meeting June 2012
 - Final reports

5th verification methods workshop Melbourne, 5-7 December 2011

Met Office Marion Mittermaier

- http://cawcr.gov.au/events/verif2011/
- 5 keynote presentations on 5 key topics
 - 1. Ensembles and probabilistic forecasts: Verification of ensemble forecasts: a guided tour through a zoo of skill metrics – A. Weigel
 - 2. Seasonal and Climate: Verification of seasonal forecasts A. Watkins
 - **3.** Aviation specific verification: Recent developments in Aviation Verification at the UK Met Office – P. Gill
 - **4.** User-oriented systems and topics: Uncertainty Forecasts and the End-User S. Jocelyn
 - 5. Tropical Cyclones and high-impact weather: Verification of tropical cyclone forecasts – B. Brown

- Special verification issue of Meteorological Applications. [Deadline was 15 September 2012.]
- Introductory paper to special issue by Ebert *et al.* on "Progress and challenges in forecast verification"
- Key areas where progress has been made include:
 - Improved reporting
 - Wider use of diagnostic verification
 - Development of new scores and techniques for difficult problems, and
 - Evaluation of forecasts for applications using meteorological information

Many interesting challenges remain:

- Improvements in methods to verify high-resolution ensembles
- Seamless predictions spanning multiple space and time scales
- Multivariate forecasts.

More work is needed to:

- make best use of new observations
- investigate links with data assimilation, and
- develop better intuitive "verification products" for endusers

WORLD METEOROLOGICAL ORGANIZATION

WORLD WEATHER RESEARCH PROGRAMME

WWRP 2012 - 1

RECOMMENDED METHODS

FOR EVALUATING

CLOUD AND RELATED PARAMETERS

March 2012

WWRP/WGNE Joint Working Group on Forecast Verification Research (JWGFVR)

http://www.wmo.int/pages/prog/arep/wwrp/new/documents/WWRP_2012_1_web.pdf

Cloud verification -summary recommendations

- User-orientated:
 - total cloud cover and cloud base height
 - Low, medium, high desirable
 - Spatial bias eg satellite cloud mask
- More generally use satellite cloud but not analyses at short range –model contamination
- model-oriented :
 - Simulated cf observed radiances
 - profiles

Summary recommendations contd.

- Verify against:
 - Gridded observations and profiles
 - Remote-sensed satellite, lidar
 - Surface station observations
 - If auto and manual do not mix
 - Automated cloud base for low thresholds (aviation)
- Model impact/sensitivity
 - Use cloud radar & lidar
- Compare against climatology, persistence forecasts
- Include 95%, median & IQ range for model assessments

Table 5 - A summary of metrics for evaluating categorical predictions

Metric	TCA, Low, Medium, High	СВН	Cloud profile	LWC, NVC	Radiances, Brightness Temperature
Frequency Bias (FB)	***	***	¥	Ŷ	ŝ
Symmetrical Extreme Dependency Score (SEDS) (Hogan <i>et al.</i> , 2009)	***	***	*	*	*
Odds or log-odds ratio (OR)	**	**	ŵ	*	*
Hanssen Kuipers Score (HK), Pierce Skill Score (PSS), Kuipers Skill Score (KSS)	**	**	*	*	*
Probability Of Detection (POD), Hit Rate (HR)	***	***	¥	¥	¥
Probability Of False Detection (PODF), False Alarm Rate (F)	***	***	*	*	*
Heidke Skill Score (HSS)	\$\$	**	÷	ŵ	ŝ
Gilbert Skill Score (GSS), Equitable Threat Score (ETS)	**	**	*	¥	¥
False Alarm Ratio (FAR)	***	***	*	*	*
Odds Ratio Skill Score (ORSS)	**	**	×	*	*
Proportion Correct (PC)	**	59	*	*	*
Threat Score (TS), Critical Success Index (CSI)	*	÷	*	×	*
Gerrity Skill Score (GSS) for <u>multi-</u> category forecasts (see description in Annex B)	***	***	*	¥	Si Si

http://www.wmo.int/pages/prog/arep/wwrp/new/documents/WWRP_2012_1_web.pdf

SRNWP-V Phase 2 Programme progress in red

- Continue & expand comparison
 - Longer more robust results up-to-date, publication of results on EUMETNET Portal
 - higher resolution of future operational models
 - AROME and ARPEGE results processed since start of 2011
 - SEEPS scores calculated over common domain
- Additional products verified
 - Cloud amount/base
 - truth ? Auto/manual different biases
 - Distribution approach
 - Wind gust --validation underway, also distribution

Hirlam UM COSMO ALADIN Aladin-Lace

3	Parameter	Scores		
	Mean sea level pressure	mean bias and root mean square errors		
	2m temperature	Bias, rmse		
	2m relative humidity	Bias, rmse		
	10m winds	mean bias speed error and root mean square vector wind error		
	6 hourly total precipitation	equitable threat score and frequency bias for 0.5, 1.0 and 4.0 mm 6h ⁻¹		

Met Office

Model	Label
Hirlam reference run by FMI	UK-FI
Aladin-France run by Meteo-France	UK-FR
COSMO Europe run by DWD	UK-GE
The North Atlantic European configuration of the Unified Model run by the Met Office	UK-EU
Aladin-Czech (LACE) run by CHMI	UK-LC
ECMWF high resolution global model	EC-GM

Comparison over ALADIN-France domain unless otherwise stated

Sea level Pressure

3.5 year mean 01/2009-06/2012

Screen temperature

3.5 year mean 01/2009-06/2012

Relative humidity

NB screen temperature and humidity assimilated in UK-NAE

Combined dates from 01/01/2009 to 30/06/2012 Vector Wind (m/s) (Corrected obs): Common Domain: Combined times Land Obs Cases: +--+UK-EU ×--×UK-FR *-*UK-GE -> UK-FI A---AEC-GM

10m vector wind rmse

3.5 years 01/2009-06/2012

Regional models better than global especially shorter range

Vector wind error

Vector Wind (m/s) (Corrected obs): Common FR Domain FC-Obs RMS Error: Combined times: Land Obs

- EC-GM

Speed Bias

Wind Speed (m/s) (Corrected obs): Common Domain: FC-Obs Mean Error Combined times: Land Obs

UK-FU X VK-FR X UK-GE 0-0UK-FI A-EC-GM

Models closer in 2012, Hirlam relatively poorer since 2011 EWGLAM 2012 © Crown copyright Met Office

ppn ETS >1mm/6h

6hr Precip Accm (>= 1.0mm): Combined stations: Equitable Threat Score Combined times: Land Obs

Cases: +--+UK-EU X-XUK-FR X-XUK-GE O-OUK-FI A-AEC-GM

6hr Precip Accm (>= 1.0mm): Combined stations: Equitable Threat Score Combined times: Land Obs

Cases: +--+UK-EU ×--×UK-FR *-*UK-GE ◇--->UK-FI Δ---ΔEC-GM

Mean Sea Level Pressure (hPa) (Corrected obs): Combined stations FC-Obs RMS Error: Combined times: Land Obs

Temperature (Celsius) (Corrected obs): Combined stations FC-Obs RMS Error: Combined times: Land Obs

Cases: +---+FR X-XAROME

Cases: +---+ FR X-XAROME ARPEGE

AROME v ARPEGE v ALADIN

Sea level Pressure ALADIN-LACE domain

Mean 01/2009-06/2012

EWGLAM 2012 © Crown copyright Met Office

Combined dates from 01/01/2009 to 30/06/2012 Mean Sea Level Pressure (Pa) (Corrected obs): Common LC Domain Case_{Cases:} +--+ UK-EU ×--× UK-LC **** UK-GE OK-FI A--- AEC-GM

LC

Screen temperature ALADIN-LACE

Mean 01/2009-06/2012

domain

10m vector wind rmse ALADIN-LACE domain

SEEPS=Stable Equitable Error in Probability Space Rodwell et al, 2010, QJRMS 136

- Dry, light , heavy based on observed climatology (24h) at station – p₁ , p₂ , p₃
- Contingency table probabilities based on these categories
- Scoring matrix stable, equitable
 - SEEPS=0 (perfect) , =1 (no skill
 , eg constant)
- Now applying to 6h accumulations in SRNWP-V
 - 6h climatology (courtesy Mark Rodwell)

- Higher skill than summer
- EC best at longer range
- 3 groupings
 - EC/UM
 - Aladin/Hirlam
 - COSMO

Error bars 70% confidence intervals

Summer (JJA) 2009-2011 data 3 summers

- Lower skill (≈ -0.1) than winter
- 2 groupings
 - EC/UM/Aladin/Hirlam
 - COSMO
 - Aladin >EC
- Dip in skill at T+24 (evening-night)
- Lack of showers persisting into late evening

according to Forecast Lead time

Summer (IJA) average (1 - SEEPS) scores

Error bars 70% confidence intervals

Extremal dependency scores

Met Office

- 99th percentile threshold
- LAMS have better bias than ECMWF
- EC underforecast extremes
- H, hit rate LAMS better

SEDI = log(F) - log(H) - log(1-F) + log(1-H)

Matthew Trueman

ND3: Spatial & scale selective verification of precipitation and cloud

- Verify against
 - Gridded analyses- ECMWF, Meteo-France, Met Office (UK only)
 - Other national gridded sets ?
 - High resolution radar (5 min,1-2 km) -UK
 - OPERA radar composite QC / gauge bias correction
- Methods
 - Fractional skill (Roberts & Lean)
 - Upscaling
 - Intensity scale (Casati)
 - Structure, amplitude, location (SAL) (Wernli et al)
 - Contiguous rain areas (Ebert & McBride)

Fuzzy verification using SEVERI cloud mask as truth binary 0 or 1

Figure 1 - FSS, bias and ETS scores for a cloud threshold >0.375 when verified against the MSGRAD cloud mask data, All spatial scales of the GM and UKV models are displayed.

Simulating images to <u>Met Office</u> Compare to SEVIRI¹

Ch09 10.8 µm- detects cloud and surface

ch5 ch9 15UTC 30th April 2012

Bob Tubbs

Ε

Day of Month

Ric Crocker

SAL for clear area (negative cloud threshold). UKV model compared to cloud analysis

- Positive S,A too little cloud
- Increase with forecast even less and bigger holes

Other deliverables

- ND4 Inclusion of severe/high impact weather verification
 - Extreme dependency scores being applied to precipitation and wind forecasts from models
- Deliverable ND5:
 - Full documentation of the methods used in the intercomparison.
 - Newer spatial methods code to be portable.

Thanks - Questions

© Crown copyright Met Office