

Forecaster empirical techniques

Presented by Mike Bush

Eddy Carroll, Jim Galvin, Phillip McGarry, Andy Page, Nick Silkstone, Tony Sullens, Chris Tubbs

For 34th EWGLAM and 19th SRNWP Annual Meeting 2012

08th – 11th October 2012 Helsinki, Finland

Contents

- Minimum temperatures
- Maximum temperatures

(usually only used when extremes are expected)

- Orographic enhancement of rainfall
- CAT
- Wind gust
- Mountain waves (vertical velocities)

Forecasting minimum temperatures

- A number of techniques have been developed, based on empirical methods, to estimate the night minimum temperature during a clear night.
- These depend on solving an equation of the form:
- Tmin = aT + bTd + C
- T is an afternoon temperature, Td is the dew point at a particular time or a mean dew point over a cooling period and C is a quantity depending only on wind speed and cloud amount. a and b are constants.
- The methods are applicable only when the ground is not snow covered

MacKenzie's Forecast Minimum Temperatures (1944)

Month	May					
Max Temp	24					
Dew Point	10				11000	
	-	<u> </u>	1.2		5.6	7.9
	Ō	8.1	9.2	10.4	11.5	13.4
Wind	1-3	9.3	9.9	11.0	12.4	13.6
Speed	4.6	10.9	11.3	12.0	13.2	14.2
In Knots	7.10	12.2	12.6	13.2	13.5	14.7
	11.40	129	134	14.2	14.4	15.1

MacKenzie's Forecast Minimum Temperatures (1944)

- Tmin = 0.5(Tmax + Td) K
- The Mackenzie's Minimum Temperature dialog enables you to produce a grid of forecast night minimum air temperatures for a range of various wind speeds and low cloud amounts.
- Select the nearest location to you from the list of stations
- Select the current month of the year
- Enter either the actual or the forecast maximum temperature for the day.
- Enter the dew point at the time of the maximum temperature.
- As the algorithm depends on constants that have been calculated for a wide range of locations in the UK (Kensett (1983), it should only be used outside the UK with caution.

Example case: 10th-11th February 2012

Min to 09Z on 11th from the UKV and UK4 21Z runs

UKV pp: -7.7 deg

UK 4 pp: -8.8 deg

Empirical Techniques:

Mackenzie Min Temps: From Tmx and Td at Tmax

Lincs and Norfolk: Suggestion of Min Temps: -10 deg to -12 deg

Oxfordshire and greater London: Suggestion Min Temps: - 09 deg

	McKenzie	e Minimu	ım Temp	erature				McKenzi	e M
Stat	tion Name	Benson				~	Sta	tion Name	e No
Mor	nth 📕	Februar	y	~	🗌 Defau	lt	Mor	nth 📕	Fe
Max	Temp	0.5	5 🚭				Max	Temp	
Dev	v Point	-5.	5 🚭				Dev	v Point	F
		To	otal cloud ir	n oktas					
		0 oktas	1-2 oktas	3-4 oktas	5-6 oktas	7-8 oktas			0
р Ц	Calm	-9.4	-8.8	-7.5	-6.4	-4.3	ots	Calm	
i -	1-3 kts	-9.3	-8.2	-7.5	-6.0	-4.6	ЪЧ	1-3 kts	
eed	4-6 kts	-8.7	-8.0	-6.9	-6.1	-4.3	edi	4-6 kts	
h م	7-10 kts	-7.0	-6.5	-5.7	-5.3	-4.2	spe	7-10 kts	
l Š	11-16 kts	-5.1	-5.0	-4.1	-4.2	-3.6	lind	11-16 kts	
			(Print		Help	\$		

Sta	tion Name	Northol	t			~
Mor	hth	Februar	у	~	📃 Defaul	lt
Max	Temp	1.	3 🗢			
Dev	v Point	-5.	0 🔹			
		Т	otal cloud ir	n oktas		
		0 oktas	1-2 oktas	3-4 oktas	5-6 oktas	7-8 oktas
nots	Calm	-8.6	-8.6	-8.5	-6.9	-5.2
in k	1-3 kts	-8.5	-7.3	-6.9	-5.7	-4.0
eed	4-6 kts	-6.7	-6.3	-5.7	-4.7	-4.2
d s þ	7-10 kts	-5.7	-5.5	-5,1	-4.3	-3.5
~	11-16 kts	-3.1	-4.1	-3.1	-4.1	-3.1

Other Min Temp
techniques suggested
MS 10 through this
area

Actual minima (degrees)

- Holbeach (Lincolnshire): -15.6
- Wainfleet (Lincolnshire): -14.4
- Marham (Norfolk): -14.3
- Scampton (Lincolnshire): -13.4
- Coningsby (Lincolnshire): -13.2
- Church Fenton (North Yorkshire): -12.9
- Leconfield (East Yorkshire): -12.7
- Benson (Oxfordshire): -12.5
- Wittering (Cambridgeshire): -12.5
- Bedford (Bedfordshire): -12.3
- Northolt (Greater London): -9.6

Model challenges for this case

- Snow cover
- Current snow scheme is a zero-layer scheme
- The warm bias is associated with excessive ground heat fluxes.
- The greater insulating effect of the new multilayer snow scheme (currently under test) can give significant reductions in temperature in this case
- Stratocumulus
- Stable boundary layer issues (see tomorrow's physics talk)

Craddock and Pritchard's Forecast Minimum Temperatures (1951)

- The following regression equation was obtained from a "statistical investigation of 16 stations in eastern England not close to the sea"
- It is considered valid for a wide area of eastern England:
- Tmin = 0.316 T12 + 0.548 Td12 1.24 + K
- T12 = screen temperature at 1200 UTC
- Td12 = dew-point temperature at 1200 UTC

Forecasting maximum temperatures: Callen and Prescott (1982)

- This is an empirical method based on the maximum temperatures observed at Gatwick and the 1000–850 hPa thickness values at midday at Crawley.
- There are three steps:
- (i) Classify the cloud cover or presence of fog between dawn and 1200 UTC on a scale from 0 to 3 as follows:

Table 2.4.

Class 0	$C_L + C_M \leq 3/8$, $C_H \leq 5/8$; or any fog confined to dawn period.
Class 1	$C_L + C_M + C_H = 4/8-6/8$; or any fog clearing slowly during morning.
Class 2	$C_L + C_M \ge 6/8$; or any fog clearing before noon.
Class 3	Predominantly overcast with precipitation (not including very slight drizzle) or persistent fog.

- (ii) Obtain the temperature adjustment for the month for the appropriate cloud class using the graph on the next slide.
- (iii) Apply this adjustment to the values given in **Table 2.5** to find the predicted maximum temperature.

Forecasting maximum temperatures: Callen and Prescott (1982)

Tu = -192.65 +0.156h

Tu = unadjusted temperature h = 1000-850hPa thickness

Forecasting maximum temperatures: Callen and Prescott

Table 2.5. Unadjusted maximum temperature (°C) in terms of 1000-850 hPa thickness Thickness (gpm) 0 2 3 4 5 6 7 8 9 1 Maximum temperature -0.8-0.6 -0.5-0.30.3 0.5 1230 -0.10.6 0.0 0.2 0.8 0.9 1.9 2.21240 1.1 1.3 1.4 1.6 1.7 2.0 2.5 2.7 2.8 3.0 3.3 3.4 3.6 3.8 1250 2.3 3.1 1260 3.9 4.1 4.24.4 4.5 4.7 4.8 5.0 5.25.3 6.2 1270 5.5 5.6 5.8 5.9 6.1 6.4 6.6 6.7 6.9 1280 7.0 7.2 7.5 7.8 8.0 8.1 8.3 8.4 7.3 7.7 1290 8.6 9.1 9.2 9.4 8.7 8.9 9.7 9.8 9.5 10.010.6 10.8 10.9 11.1 1300 10.1 10.3 10.5 11.2 11.6 11.4 1310 11.7 11.9 12.0 12.212.3 12.5 12.6 12.8 13.0 13.1 1320 13.4 13.6 13.713.9 14.214.4 14.7 13.3 14.014.5 1330 14.8 15.0 15.1 15.3 15.5 15.6 15.8 15.9 16.1 16.2 17.6 1340 16.5 16.7 16.9 17.0 17.2 17.3 17.5 17.8 16.4 1350 17.9 18.1 18.3 18.4 18.6 18.7 18.9 19.0 19.2 19.4 19.7 19.8 20.0 20.120.3 20.6 20.8 1360 19.5 20.4 20.9 21.7 21.8 22.0 22.2 22.5 1370 21.121.2 21.4 21.5 22.31380 22.8 22.9 23.123.3 23.423.6 23.723.9 22.624.0 1390 24.224.3 24.5 24.7 24.8 25.0 25.125.3 25.425.6 1400 25.9 25.726.126.226.4 26.5 26.7 26.8 27.0 27.21410 27.327.5 27.627.827.9 28.128.228.4 28.6 28.7 30.0 29.3 29.5 29.6 29.8 1420 28.9 29.0 29.2 30.1 30.3 30.9 31.1 31.2 31.4 31.5 31.8 1430 30.4 30.6 30.7 31.7 1440 32.1 32.3 32.5 32.6 32.8 32.9 33.1 33.2 33.4 32.0

Callen et al. (1982)

Forecasting maximum temperatures: Using 850 theta-w (wet bulb potential temperature)

The maximum temperature derived from the 850 WBPT is presented in **Table 2.6**, with corrections for wet and sunny conditions (based on London Weather Centre data for southern England).

	Equivalent thickness														
850 hPa	(m)													Corre	ection
θ_w	1000-850 hPa	Ian	Feb	Mar	Anr	May	Tun	Int	Διισ	Sent	Oct	Nov	Dec	Wet	Sunny
	ma	2011.	100.	10101.	11p1.	may	5 6411.	204	1105.	Sept.	001	1101.	Dec.	net	Statily
18	1390	19	20	21	23	25	26	26	25	24	22	20	19	-5	+3
16	1380	17	19	19	21	23	25	25	23	23	21	19	17	-5	+2
14	1370	16	17	18	20	22	23	23	22	21	19	17	16	-4	+2
12	1360	15	15	17	19	21	21	21	21	19	17	15	17	-4	+2
10	1350	13	14	15	17	19	20	20	19	18	16	14	13	-4	+2
8	1340	11	13	13	15	17	19	19	17	17	15	13	11	-3	+2
6	1325	9	10	11	13	15	16	16	15	14	12	10	9	-3	+1
4	1320	8	9	10	12	14	15	15	14	13	11	9	8	-3	+1
2	1305	6	7	8	10	12	13	13	12	11	9	7	6	-3	+1
0	1295	4	5	6	8	10	11	11	10	9	7	5	4	$^{-2}$	+1
-2	1285	3	4	5	7	9	10	10	9	8	6	4	3	$^{-2}$	+1
-4	1270	-1	1	1	4	6	7	7	6	5	3	1	1	-2	+1

Table 2.6. Maximum temperatures derived from 850 hPa wet-bulb potential temperatures

Maximum temperatures

- Forecasters tend to use 1000hPa 850hPa thickness and recent model performance rather than following Callen and Prescott too closely
- Callen and Prescott is derived for one location in southern England so it may not work so well for other locations.
- Forecasters look to see whether the 1000hPa -850hPa thickness is higher or lower than the previous day.
- They look at the model Tmax error over previous days and then predict the likely errors in model Tmax for today

Maximum temperatures: 28/03/12

- The following comes from the Chief Forecaster Model Assessment and Emphasis:
- In order to judge the UKV model maximum temperature bias we need to compare similar runs e.g 21Z runs on consecutive days.
- Looking at the maxima yesterday compared to model expectation, the UKV was 1-2 degrees too low in some, but not all areas, notably in urban areas in the south and also to lee of high ground
- 18Z NAE analysis shows the expected 1360-1365 M over E Scotland and we expect an increase to 1360 M across many central and S parts of the UK for Wednesday.

UKV Tmax for 28/03/12 from 21Z run

20.8 degrees

20.2 degrees

Example case: 28th March 2012

- Sample of actual maxima for Wednesday 28 March 2012
- England
- Heathrow and London St.James's Park 22.8
- Watnall 21.9
- Durham 21.8
- Wales: Usk 21.9
- Scotland: Strathallan 20.9
- Northern Ireland: Derrylin, Cornahoule 20.6

Model challenges

- Urban areas MORUSES scheme under test
- Bowen ratio LH Flux too large, sensible heat flux too small
- Soil atmosphere coupling (too greater heat flux into the soil during the day).
- Radiation sees a (global) climatological aerosol.
 Values too high for the U.K leads to damped diurnal cycle

Orographic enhancement of rainfall (Manchester weather Centre)

- The following rates of rainfall are what have been observed regularly, they persist for many hours over the named hilly areas (see next slide) when the following conditions are met:
- 1) Model output shows dynamically induced rainfall, at any rate
- 2) Warm advection persists during the period
- 3) A frontal system is near or will cross the area during the period
- The process of amplification of rainfall rate (compared to the model forecast rates) is probably due to enforced uplift (hence wind speed dependent), absolute water content (hence theta-w dependent) and warm advection (which maintains saturation of the airmass depth).
- Seeder-feeder effect. The effect is particularly marked when a conveyor belt is identifiable (a nose of high theta w is pointing towards the area)

Orographic enhancement of rainfall (Manchester weather Centre)

Table A: NE Region - rates for the wettest gauges in West Pennines and Cheviot

Gradient wind speed with direction 190-260 degrees	30-35 knots	40-45 knots	55 knots	60-70 knots
850mb theta w 7,8,9 degrees C	1.0mm/hr	2.0mm/hr	3.0mm/hr	3.5mm/hr
850mb theta w 10,11,12 degrees C	1.0mm/hr	3.0mm/hr	3.5mm/hr	4.5mm/hr
850mb theta w 13,14,15 degrees C	1.5mm/hr	4.5mm/hr	5.0mm/hr	5.5mm/hr

South, Central and Northern Pennines, typically have 0.5-0.6 of these rates.

Table B: NW Region - rates for Honister

Gradient wind speed with direction 200-260 degrees	30-35 knots	40-45 knots	55 knots	60-70 knots
850mb theta w 7,8,9 degrees C	2.0mm/hr	4.0mm/hr	6.0mm/hr	9.5mm/hr
850mb theta w 10,11,12 degrees C	3.5mm/hr	6.5mm/hr	8.0mm/hr	10.0mm/hr
850mb theta w 13,14,15 degrees C	7.0mm/hr	10.0mm/hr	11.0mm/hr	12.0mm/hr

Other gauges e.g. Cornhow, Brotherswater, Thirlmere, Kentmere, typically have 0.5-0.6 of these rates.

Orographic enhancement of rainfall (Manchester weather Centre)

Table C: Snowdonia - rates for wettest gauges in Snowdonia

Gradient wind speed with direction 210-300 degrees	35-40 knots	40-50 knots	55 knots	60-70 knots
850mb theta w 7,8,9 degrees C	3.5mm/hr	5.0mm/hr	6.0mm/hr	7.0mm/hr
850mb theta w 10,11,12 degrees C	4.0mm/hr	5.5mm/hr	7.0mm/hr	9.0mm/hr
850mb theta w 13,14,15 degrees C	4.5mm/hr	7.0mm/hr	8.0mm/hr	10.0mm/hr

Clear Air turbulence (CAT)

- CAT is generated by the following processes
 - 1) wind shear
 - 2) Convection
 - 3) Mountain waves
- Two of the main methods used are Dutton (1980) and Ellrod (1990)
- Dutton gives a probability of CAT whilst Ellrod gives a potential
- Work in hand to combine these methods
- The NWP product has to serve two main users:
 - 1) Flight planning
 - 2) Briefings for pilots
- The first of these can be quite a detailed field, whilst the second one has to be quite a smooth field

Clear Air turbulence (CAT) & WAFC

- The World Area Forecast Centre (WAFC) bench have to produce CAT maps
- Forecasters visualise the maximum wind field and the 300mb wind field and will mentally pick out areas of CAT based on the tightness of the wind contours around jets.
- They overlay the model CAT probability field (Dutton) and then hand draw charts of CAT to produce a smoothed field.
- The Significant Weather Automation Project aims to produce an NWP product (smoothed objects) that forecasters can use directly without having to hand draw charts

Wind gust diagnostic

- The parametrisation is essentially the same as the one used by ECWMF
- Gust=wind_10m + C* sigma
- C=4.0 and sigma estimated from Ustar in surface boundary layer parametrisation.
- There hasn't really been a tuning to obs ,and the same constant C is used for all resolutions.
- We do not add a contribution from convective downdrafts.

Wind gust: 14/09/12

UK4 gusts 09Z today – suggests close to 50kn top of Pennines. Gusts lee of Pennines likely to be significantly underdone, with 40-45kn likely, and isol 50kn+.

Adjusted 600m winds as guide to gusts – probably good guide to lee gusts in prone spots although will underplay strengths on high ground.

Model challenges

- Vale of York lee gustiness associated with downslope winds and mountain waves.
- The new ENDGAME dynamical core will treat gravity waves better than New dynamics and I is hoped that lee waves will be better represented.
- Model resolution is also important.

Mountain waves

- Casswell (1966)
- Shutts (1993)
- Forecasters typically use Casswell to give them an idea of the spatial extent of mountain wave activity
- They then explore forecast tephis in the region of interest and get values of w from Shutts
- They look at 3DVOM output
- Then combining all of this with satellite imagery they come up with a best guess forecast

3DVOM

- 3DVOM (3-D Velocities over Mountains) is a finitedifference numerical model designed for high-resolution simulations of lee waves generated by flow over complex terrain.
- The model is based on a set of simplified equations of motion, the linearised shallow Boussinesq equations of motion for a dry atmosphere
- Because the equations of motion are greatly simplified (relative to those in a full NWP forecast model) solutions can be generated relatively quickly.
- The 3DVOM code is used to generate high-resolution detailed forecasts of lee-wave fields and associated nearsurface winds.

3DVOM output

Forecast maximum vertical velocity: 20121005_00_T+06 Valid at 06Z 20121005. Updated at 06:00 UTC 2012-10-05

Global UKMO Global	Full Domain 0.56 x 0.38	95.10.2012 06:00	2	00.0	€ 000.	.0	۱ ۲ 🔚
	ui 🚑 🖪 A						
•				Asi	cent Navigator		7
			Model: UKM I Run: 05.10 Validity: 05.10	IO Global/Full Dom 0.2012 06:00* 0.2012 06:00 (+0	nain 0.56 x 0.38* 0:00)		
7460ft 200		Wind					
0470ft 20[495]		-25					
20050 100 mpa]	XXXXXX						
		-15 1					
ASADA 150(HIPST		10	. 8	TABL	JLATED LEE W	AVES	
	V IV CLARKEN X / X					AVES	
	10-6-1-1-		. F	leight (ft)	Maxim	um vertical velo	ocity (ft/min)
8484ft 200[Hpa]			. F	leight (ft) 16404	Maxim	um vertical velo	ocity (ft/min) 580.85
8484ft 200j Ama] 3765ft 200[hma]		5 (10)	Height	leight (ft) 16404 1st wave ft/min	Maxim 2nd wave ft/min	um vertical velo 3rd wave ft/min	ocity (ft/min) 580.85 4th wave ft/min
8484ft 200[Atra] 3765ft 230[Atra] 9798ft 200[Atra]		9 5 10 15	. Height ft 1640	Height (ft) 16404 1st wave ft/min 174.06	Maxim 2nd wave ft/min 177.82	um vertical velo 3rd wave ft/min ***	ocity (ft/min) 580.85 4th wave ft/min ***
434910 8484ft 200[##a] 3765ft 230[##a] 9798ft 200[##a]		5 5 10 15 20	Height ft 1640 3281	Height (ft) 16404 1st wave ft/min 174.06 306.81	Maxim 2nd wave ft/min 177.82 308.35	ard wave 3rd wave ft/min ***	ocity (ft/min) 580.85 4th wave ft/min *** ***
434910 8484ft 200[Attra] 3765ft 230[Attra] 9798ft 200[Attra] 3219ft 100[Attra]			Height ft 1640 3281 4921	leight (ft) 16404 1st wave ft/min 174.06 306.81 397.24	Maxim 2nd wave ft/min 177.82 308.35 388.88	3rd wave ft/min *** ***	ocity (ft/min) 580.85 4th wave ft/min *** ***
434910 8484ft 200[https] 3765ft 250[https] 9798ft 200[https] 3219ft 200[https]		5 10 15 20 25 30	Height ft 1640 3281 4921 6562	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23	Jard wave Srd wave ft/min Hatt	ocity (ft/min) 580.85 4th wave ft/min **** *** ***
434910 8484ft 200[Atra] 3765ft 250[Atra] 9798ft 200[Atra] 3219ft 100[Atra] 7840ft 500[Atra]		9 5 10 15 20 25 30 30 35	Height ft 1640 3281 4921 6562 8202	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33	ard wave 3rd wave ft/min **** **** *** ***	ocity (ft/min) 580.85 4th wave ft/min *** *** *** *** ***
434910 8484ft 200[Atra] 3765ft 230[Atra] 9798ft 200[Atra] 3219ft 200[Atra] 3219ft 200[Atra] 3308ft 500[Atra]		20 30 35 35	Height ft 1640 3281 4921 6562 8202 9843	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35	ard wave 3rd wave ft/min *** *** *** *** *** ***	ocity (ft/min) 580.85 4th wave ft/min *** *** *** *** ***
434910 8484ft 2006/tema1 3765ft 2306/tema1 9798ft 2006/tema1 3219ft 2006/tema1 3308ft 2006/tema1 3308ft 2006/tema1 9415ft 2005/tema1		20 5 30 25 30 35 40 45	Height ft 1640 3281 4921 6562 8202 9843 11483	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77	Um vertical velo 3rd wave ft/min *** *** *** *** *** *** ***	ocity (ft/min) 580.85 4th wave ft/min *** *** *** *** *** ***
434910 8484ft 20064991 3765ft 23064991 9798ft 20064991 3219ft 20064991 3308ft 20064991 9415ft 700(5)Pa1		5 10 15 20 25 30 35 45 45 50	Height ft 1640 3281 4921 6562 8202 9843 11483 13123	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74	ard wave ft/min %abs %abs %abs %abs %abs %abs %abs %abs	ocity (ft/min) 580.85 4th wave ft/min **** *** *** *** *** ***
434910 8484ft 200[https] 3765ft 250[https] 9798ft 200[https] 3219ft 200[https] 3219ft 200[https] 3308ft 200[https] 3308ft 200[https] 9415ft 200[https] 9415ft 200[https] 200[https]		20 30 30 30 30 30 35 40 45 50 55 55	Height ft 1640 3281 4921 6562 8202 9843 11483 13123 14764	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80 558.02	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74 448.57	Jrd wave ft/min Hotok Ho	ocity (ft/min) 580.85 4th wave ft/min **** *** *** *** *** *** *** ***
434910 8484ft 2006/https] 3765ft 2506/https] 9798ft 2006/https] 3219ft 2006/https] 3219ft 2006/https] 3308ft 2006/https] 3308ft 2006/https] 9415ft 2006/https] 9506		0 3 3 3 3 3 3 3 3 3 3 3 3 3	Height ft 1640 3281 4921 6562 8202 9843 11483 13123 14764 16404	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80 558.02 580.85	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74 448.57 437.73 497.73	Jard wave ft/min Hold Hold Hold Hold Hold Hold Hold Hold	ocity (ft/min) 580.85 4th wave ft/min **** *** *** *** *** *** *** ***
434910 8484ft 2006/htma1 3765ft 2306/htma1 9798ft 2006/htma1 3219ft 2006/htma1 3308ft 5006/htma1 3308ft 5006/htma1 9415ft 7005hPa1 4380ft 5006/htma1 20ft 450 30 235 - 30 - 25 -		0 30 20 25 30 30 45 50 55 55 55	Height ft 1640 3281 4921 6562 8202 9843 11483 13123 14764 18045 10605	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80 558.02 580.85 573.47 542.66	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74 448.57 437.73 407.07 267.12	ard wave ft/min 3rd wave ft/min 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	boity (ft/min) 580.85 4th wave ft/min **** *** *** *** *** *** *** *** ***
434910 8484ft 2004 https:// 3765ft 2304 https:// 9798ft 2004 https:// 3219ft 2004 https:// 3219ft 2004 https:// 3308ft 2004 https:// 2004 https:// 2005 https:// 2004 https:// 2005 https:// 2		0-35-40-45-50 55	Height ft 1640 3281 4921 6562 8202 9843 11483 13123 14764 18045 19685 21225	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80 558.02 580.85 573.47 542.66 509.77	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74 448.57 437.73 407.07 367.13 200 E	aum vertical velo 3rd wave ft/min **** **** **** *** *** *** ***	ocity (ft/min) 580.85 4th wave ft/min **** *** *** *** *** *** *** *** ***
434910 8484ft 2006/tema1 3765ft 2306/tema1 9798ft 2006/tema1 9798ft 2006/tema1 3219ft 2006/tema1 3308ft 2006/tema1 9415ft 2005/201 4380ft 2006/tema1 20ft 460-tema1 20ft 460-tema1			Height ft 1640 3281 4921 6562 8202 9843 11483 13123 14764 18045 19685 21325 23066	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80 558.02 580.85 573.47 542.66 508.77 476.11	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74 448.57 437.73 407.07 367.13 329.55 205.60	3rd wave ft/min 3rd wave ft/min 3rd wave 400	boity (ft/min) 580.85 4th wave ft/min *** *** *** *** *** *** *** *** *** *
434910 8484ft 2006/temai 3765ft 2306/temai 9798ft 2006/temai 3219ft 2006/temai 3308ft 2006/temai 3308ft 2006/temai 9415ft 7005/201 4380ft 2006/temai 20ft 460/temai			Height ft 1640 3281 4921 6562 8202 9843 11483 13123 14764 18045 19685 21325 22966 24606	Height (ft) 16404 1st wave ft/min 174.06 306.81 397.24 461.88 511.57 531.65 527.32 534.80 558.02 580.85 573.47 542.66 508.77 476.11 446.56	Maxim 2nd wave ft/min 177.82 308.35 388.88 441.23 479.33 485.35 464.77 452.74 448.57 437.73 407.07 367.13 329.55 295.60 265.98	3rd wave ft/min 3vox ****	boity (ft/min) 580.85 4th wave ft/min **** *** *** *** *** *** *** *** ***

Model challenges

- Verification of 3DVOM has been carried out against satellite and aircraft observations.
- S. B. Vosper, H. Wells, J. A. Sinclair and P. F. Sheridan: A climatology of lee waves over the UK derived from model forecasts *Meteorol. Appl. (2012)*
- However forecasters "feel" that 3DVOM tends to overpredict mountain waves.
- Work is in hand to improve 3DVOM output for forecasters e.g. outputting 95th percentile winds rather than the maximum.

General comments (1)

- Forecasters use these methods to give themselves an independent way of checking whether the model output looks sensible or not.
- Do the predictions from these methods tally with the model?
- If not then look more closely...
- The precipitation example gives you an idea of the potential accumulations.
- Particularly useful at long lead times (e.g. 5 day forecast) to give a "heads up warning". You may not have high resolution model output and positioning errors may be quite large.
- Ensembles do not always sample all the eventualities, having a tendency to cluster too strongly around the deterministic solution.

General comments (2)

- Despite the considerable advances in NWP skill, there remain serious challenges for our models
- Data assimilation: soil moisture/temperature initialisation. DA for convective scale models...
- Parametrizations: correctly representing parameters such as snow, cloud etc.
- Resolution: the horizontal and vertical resolution of our models is only just enough to resolve mountain lee waves for example. Parameters such as fog and screen temperature can vary greatly on very local scales.
- So these empirical methods may hang on for a little while longer...