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About a consistent description of sub grid processes: 

In what respect is the set of commonly used parameterization schemes inconsistent? 

How can we achieve consistency? 
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Outline of the talk: 

o Reasons of inconsistency are related to the principal characteristics of parameterizations 

 Parameterizations in terms of variable fields … 

 on the local scale 

• substituting source terms in primitive budget equations 

 on the scale of the numerical grid  

• substituting statistical moments in filtered budget equations 

 Closure strategies and the need of process separation 
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 Inconsistency in current parameterization packages due to missing interaction 

o Towards a consistent set of parameterizations schemes via scale separation 

 Separated turbulence including interaction with non-turbulent SGS processes (circulations) 

 Horizontal shear eddies 

 SSO wakes 

 Convection 



The primitive equations: 

molecular flux density 
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 molecular flux densities 

 phase changes sources 

(cloud microphysics) 

 radiation flux convergence 
Numerical scheme solves  filtered equations:  

:  filtered (mean) variable with fluctuation  




̂ :  density weighted mean with fluctuation  ˆ

(including spatial derivatives) 
functions in all model variables  

Non-linearity causes generation of  statistical moments: 
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roughness layer terms: 
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SGS covariance: 

scalar variables 

simplified for efficiency reasons using effective parameters 

 Non-commutability of filter and (e.g.) multiplication 
spatial 

differentiation or 

vT

 Filter may be a resolution dependent 

moving volume average 
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 Filter removes SGS variability 



The filtered model equations: 
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SGS mixing SGS conversion 



Parameterizations in terms of grid scale (GS) variables : 

• Further information (assumptions) about these additional covariance terms has to be introduced: 

•  Closure assumptions are additional constraints that can’t be general valid 

distinguish different SGS flow structures more or less according to their length scales coherence 

SGS Turbulence:  isotropic,  normal distributed, only one 

characteristic length scale at each grid point, 

forced by shear and buoyancy 

SGS Circulation:  non isotropic,  arbitrarily skewed and 

coherent structures of several length scales, 

supplied by various pressure forces 

 Convection: 

Kata- and anabatic 

density circulations: 

large vertical scales of coherence, full microphysics, forced by buoyancy feed back 

direct thermal circulation forced by lateral cooling or heating by sloped surfaces of 

the earth; dominated by SGS surface structures like SSO 

Horizontal shear eddies: 

Wake eddies: 

Breaking gravity wave eddies: 

produced by strong horizontal shear e.g. at frontal zones; dominated by horizontal 

grid scale 

produced by blocking at SGS surface structures (form drag forces) 

belong to wave length of instable gravity waves of arbitrary scales 

v
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dependent on a list of  additional parameters 

functions in the GS model variables  GS parameterizations due to 

 

 SGS variability 
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Each with significant mixing potential (waves so far excluded) 

and specific  closure assumptions 

such as: 



Closure strategies: 

• Describing the covariance terms within different frameworks all based on first principals 

• Introduction of closure assumptions by application of a related truncation procedure 

• Finding a flow structure separation according to the validity of closure assumptions 

• Setting up a consistently separated set of parameterization schemes being to some extend general valid 

• Two different frameworks available: 

 Higher order closure (HOC): Using budget equations for needed statistical moments (that always 

contain new ones, even such of higher orders) and truncating the order of considered moments 

 Second order closure: fits very well to turbulence 
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 Conditional domain closure (CDC): Using budget equations for conditional averages of model 

variables (e.g. according to classes of vertical velocity) and building the needed covariance terms by the 

related truncated statistics 

 Mass flux closure (bi- or tri-modal distribution): fits very well to convection 
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2-nd order budgets: 
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SGS flux density GS flux density shear production source term correlation dissipation sink 

influenced by pressure force, 

microphysics and radiation 
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  ,,, 21  prognostic model variables 



roughness layer 

modification of 

transport 

laminar 

transport 
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to be parameterized 
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Conditional domain budgets: 
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Equations to be solved under simplifying assumptions  

 stationarity, same horizontal advection for each subdomain, … 
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Separation  Turbulence  Circulations 

Parameterizations of source terms  

Parameterizations of  SGS processes 

integrated in  

Cloud-

microphysics  

Radiation 

transport 

interaction 

Local parameterizations: 

GS parameterizations: 

Interactions to be considered: 
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STIC  

UTCS : 

 all within a single HOC framework without separation 

 Only feasible, if circulations are in common with 

turbulence approximations: CONTRADICTION!! 

Increased set of  

diagnostic or prognostic  

variables 

Mass fraction and number concentration of 

 cloud constituents,  

 precipitation and  

 passive tracers 

I. 

II. 

III. 
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Current realization: 

I. Some coupling between local parameterizations is missing 

 Radiation does not consider all cloud- and precipitation constituents 
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 Problems with incomplete description: double counting, non realizability, unrealistic or contradicting 

results 

II. Some SGS contributions of source terms in 1-st order budgets as well as in the budgets for SGS 

motions are only considered partly or inconsistently (for radiation not at all) 

SGS contributions of 

cloud microphysics  

in budgets of SGS motions  in 1-st order budgets 

(directly) 

due to turbulence 

(2-nd order equations) 

only statistical saturation adjustment by using 

conservative variables 

not at all 

due to convection 

(mass flux equations) 

specific formulation including precipitation by convective source term 

tendencies (e.g. convective 

precipitation) 

III. We apply parameterizations of effects on 1-st order budgets due to different processes (turbulence, 

convection,  SSO wakes) without using a clear separation procedure 

 Grid scale parameterizations are so far formulated as if they are independent form each other 

 (e.g.: turbulence does not “feel” that convection is present and vice versa) 
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Principle of scale separation (in order to solve problem III.): 

• Assume that turbulence approximations can be assigned to all horizontal scales not smaller than a 

maximal turbulent length scale        (mainly dependent on the distance from the surface of the earth) 
pL

• Spectral separation by   

-  averaging these budgets along the whole control volume (double averaging) 

-  considering budgets with respect to the separation scale                                gp DLL ,min

 1-st order budgets with SGS contributions form turbulence and circulations 

 Two sets of 2-nd order equations containing additional scale interaction terms  

one set for      pure turbulence     and another for     pure circulations  
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Mass flux equations describing initial conditions and 

lateral mixing of cells using properties of turbulence 
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L : with respect to the 

separation scale L 

 Should provide the missing interaction between turbulence and circulations automatically 
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Additional circulation terms in the turbulent 2-nd order budgets: 
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L : with respect to the 

separation scale L 

CKE TKE 



Separated TKE equation 
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• Semi-parameterized (neglecting laminar transport and roughness layer modification of transport)  
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 Already used for EDR forecast ;  to be tuned and verified for  operational use 
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 Contribution taken form SSO scheme :   already operational 
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 Two contributions:  

-  one taken form  convection scheme: already used for EDR forecast ;       to be verified   

-  one being a crude estimate of surface induced density flows:  active since years; to be revised  
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pot. temperature [K] Wind speed [m/s] 

reference 
including horizontal 

shear – and SSO-

production 

including horizontal 

shear –, SSO- and 

convective 

production 

mountain ridge 

COSMO-US: cross section across  frontal line and Appalachian mountains 

Antalya 2013 DWD 



Conclusion: 
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 A prerequisite for consistency of closure schemes:  scale separation 

- I. among  local parameterizations 

- II. between  local and grid scale parameterizations 

 III. among  grid scale parameterizations 

 Main sources of inconsistencies: Missing interaction  

- Provides a consistent overlap between flow structures, for which incompatible closure assumptions are valid 

- Separation of turbulence by a sub-filter only smoothing “turbulence” provides variance equations really valid for turbulence 

- They automatically contain shear production terms by non-turbulent sub-gird processes (scale transfer terms) 

 Turbulent fluxes remain in flux gradient form, those by non-turbulent flow structures do not. 

 Already (partly) implemented TKE-production by scale transfer from kinetic energy of … 

- wakes generated by surface inhomogeneity (from SSO-blocking scheme)  already operational 

- thermal circulation by surface inhomogeneity (due to differential heating/cooling)  only crude approximation 

- horizontal eddies generated by horizontal shear (e.g. at frontal zones)  not yet verified 

- Convection circulation (buoyant production from convection scheme)  not yet verified 

COSMO Sibiu 2013 

 Still missing are scale adaptive formulations of the circulation parameterizations! 

already used 

for EDR 

forecast 
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Thank you for attention 
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Non-turbulent (convective) modulation of normal distributed patterns 

in a statistical condensation scheme:  
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 gp DLL ,min :  separation scale for turbulence  

sL :  horizontal scale of largest normal distr. patterns (turbulence, wakes, 

gravity waves, etc) 

vswvs qqq  :  local over saturation  
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