

Review about the current dynamical core developments in the COSMO model

35th EWGLAM / 20th SRNWP meeting 30 Sept. – 03 Oct. 2013, Antalya

<u>Michael Baldauf</u>, Ulrich Blahak (Deutscher Wetterdienst), Zbigniew Piotrowski (IMGW, Poland)

<u>Current Runge-Kutta dynamical core</u>

(Wicker, Skamarock (2002) MWR, Baldauf (2010) MWR)

- further maintenance (DWD) (~0.5 FTE)
- higher order discretizations (Univ. Cottbus) (~1 FTE)

COSMO priority project ,Conservative dynamical core' (2008-2012): (Baldauf et al. (2013) COSMO Tech. Rep.no.23, available soon)

• EULAG (anelastic) as a candidate for the future COSMO dyn. core

Ziemiański et al. (2011) Acta Geophysica Rosa et al. (2011) Acta Geophysica Kurowski et al. (2011) Acta Geophysica

- → follow up PP ,COSMO-EULAG operationalization' (2012-2015) (IMGW, Poland) (~3 FTE)
- <u>fully implicit FV solver ,CONSOL</u>' (CIRA, Italy) (~0.5 FTE) Jameson (1991) AIAA

Project in the framework of the German research foundation

 <u>Dynamical core based on Discontinuous Galerkin methods</u> (DWD, Univ. Freiburg) (~1.08 FTE) MetStröm

ISOBTIUM FOR SMALL SCALE MODELING

1 FTE (full time equivalent) = 1 person/year

The new fast waves solver for the COSMO Runge-Kutta dynamical core:

M. Baldauf (DWD)

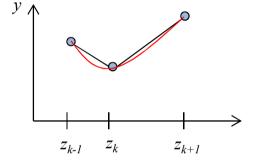
Main changes towards the old fast waves solver:

- improvement of the vertical discretization: use of weighted averaging operators for all vertical operations
- 2. divergence in strong conservation form
- 3. optional: complete 3D (=isotropic) divergence damping
- 4. optional: Mahrer (1984) discretization of horizontal pressure gradients

overall goal: improve numerical stability of COSMO

- new fast waves solver is available since COSMO 4.24
- runs operationally in COSMO-DE, -DE-EPS, -EU at DWD since 16 Jan. 2013

M. Baldauf (2013) COSMO Technical report No. 21 (www.cosmo-model.org)



Discretization in stretched grids

Example: calculate 1st derivative $\partial y/\partial z$ by an (at most) 3-point formula $(\leftarrow tridiagonal solver)$

Approach 1: by weightings in ,original space'

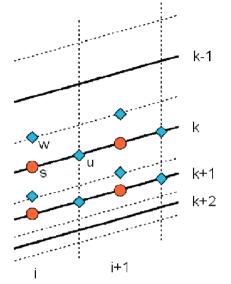
$$\left. \frac{dy}{dz} \right|_{z_k} = \frac{z_{k+1} - z_k}{z_{k+1} - z_{k-1}} \cdot \frac{y_k - y_{k-1}}{z_k - z_{k-1}} + \frac{z_k - z_{k-1}}{z_{k+1} - z_{k-1}} \cdot \frac{y_{k+1} - y_k}{z_{k+1} - z_k}$$

(e.g. Ikeda, Durbin (2004) JCP)

Approach 2: use of a coordinate transformation $z_k = f(\zeta_k)$, $\zeta_k = k \Delta \zeta$

$$\frac{\partial y}{\partial z} = \frac{\partial \zeta}{\partial z} \frac{\partial y}{\partial \zeta}$$

straightforward in unstaggered A-grid, less clear in staggered C-grid


COSMO: Half levels (*w*-positions) are defined by a stretching function $z_k = f(\zeta_k)$; Main levels (*p*['], *T*[']-pos.) lie in the middle of two half levels

<u>Arithmetic</u> average from half levels to main level:

$$\overline{\psi}^{\zeta} \equiv A_{\zeta} \psi|_{i,j,k} := \frac{1}{2} (\psi_{i,j,k-\frac{1}{2}} + \psi_{i,j,k+\frac{1}{2}})$$

Weighted average from main levels to half level

$$\overline{\psi}^{\zeta,N} \equiv \left. A^N_{\zeta} \psi \right|_{i,j,k-\frac{1}{2}} := g_{k-\frac{1}{2}} \psi_{i,j,k} + (1 - g_{k-\frac{1}{2}}) \psi_{i,j,k-1}$$

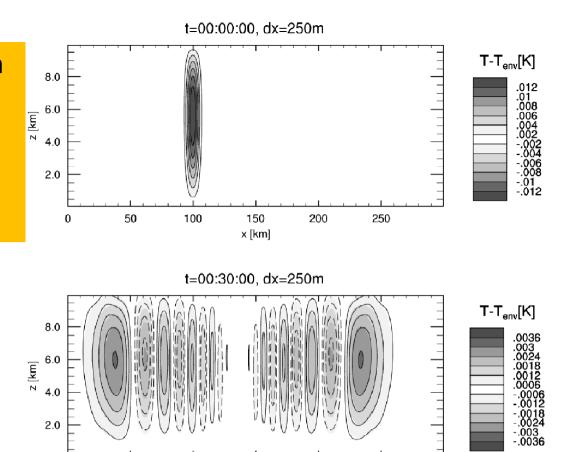
Derivatives always by centered differences (appropriate average used before)

$$\delta_{\zeta}\psi|_{i,j,k} := \frac{\psi_{i,j,k+\frac{1}{2}} - \psi_{i,j,k-\frac{1}{2}}}{\Delta\zeta}$$

G. Zängl could show the advantages of weighted averages in the explicit parts of the fast waves solver.

<u>New</u>: application to all vertical operations (also the implicit ones)

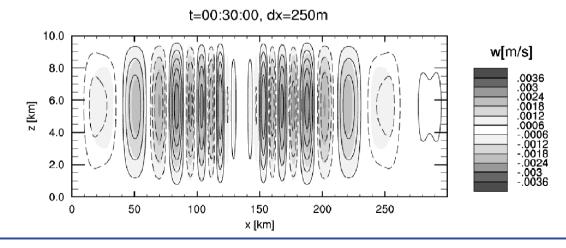
How can we check the correctness of these vertical weightings?


Compare against:

An analytic solution for linear gravity waves in a channel as a test case for solvers of the non-hydrostatic, compressible Euler equations

Baldauf, Brdar (2013) QJRMS

Analytic solution for the expansion of sound / gravity waves in an isothermal atmosphere for the *non-hydrostatic, compressible Euler equations* available *(Baldauf, Brdar (2013) QJRMS)*



Initialization similar to Skamarock, Klemp (1994)

$$T'(x, z, t = 0) = \Delta T \cdot e^{\frac{1}{2}\delta z} \cdot e^{-\frac{(x-x_c)^2}{d^2}} \cdot \sin \pi \frac{z}{H}$$
$$p'(x, z, t = 0) = 0$$

Small scale test with a basic flow U₀=20 m/s f=0

> Black lines: analytic solution Shaded: COSMO-simul.

150

x [km]

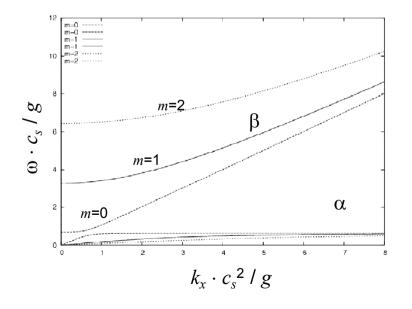
200

250

100

0

50


Bretherton-, Fourier- and Laplace-Transformation \rightarrow

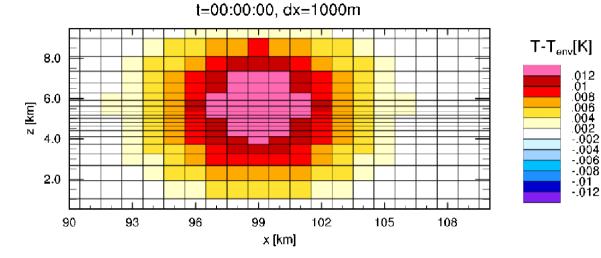
Analytic solution for the Fourier transformed vertical velocity w

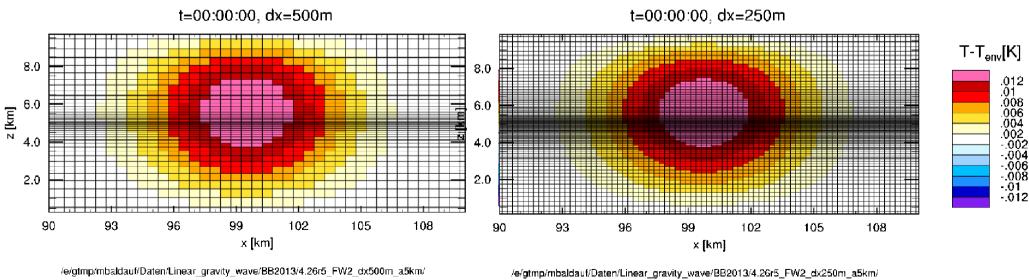
$$\hat{w}_b(k_x, k_z, t) = -\frac{1}{\beta^2 - \alpha^2} \left[-\alpha \sin \alpha t + \beta \sin \beta t + \left(f^2 + c_s^2 k_x^2 \right) \left(\frac{1}{\alpha} \sin \alpha t - \frac{1}{\beta} \sin \beta t \right) \right] g \frac{\hat{\rho}_b(k_x, k_z, t = 0)}{\rho_s}$$

analogous expressions for $u_b(k_x, k_z, t)$, ...

The frequencies α , β are the gravity wave and acoustic branch, respectively, of the dispersion relation for compressible waves in a channel with height H; $k_{\tau} = (\pi / H) \cdot m$

Baldauf, Brdar (2013) QJRMS



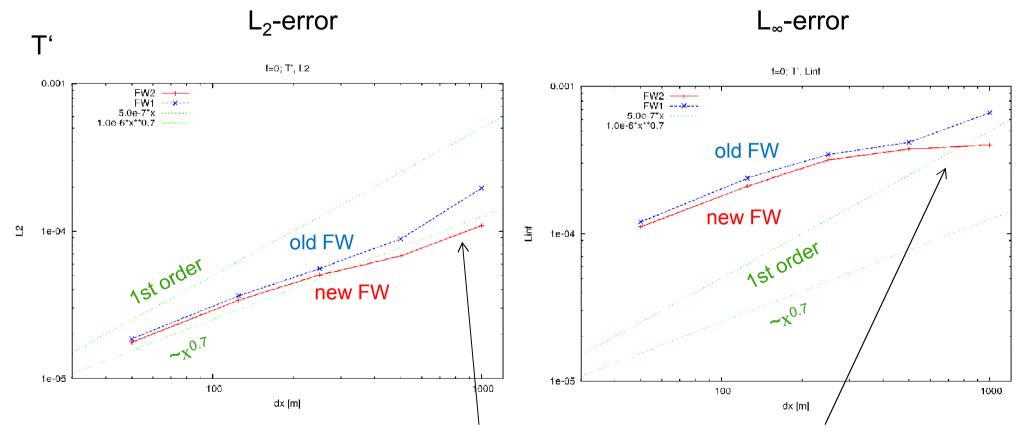


Convergence test with vertically stretched grid

initial condition for T' and grids for the first 3 resolutions

[/]e/gtmp/mbaldauf/Daten/Linear gravity wave/B82013/4.26r5 FW2 dx1000m a5km/ Tme (1): mean=0.000330114 min=0 max=0.0144043

Tme (1): mean=0.000330524 min=0 max=0.0144043


Tme (1): mean=0.00033047 min=0 max=0.0144043

Convergence test with vertically stretched grid for old and new fast waves solver

the improvement is best for coarse resolutions, because here the highest relative stretching for neighbouring grid boxes occurs

Bug fix in the water loading contribution of the buoyancy term

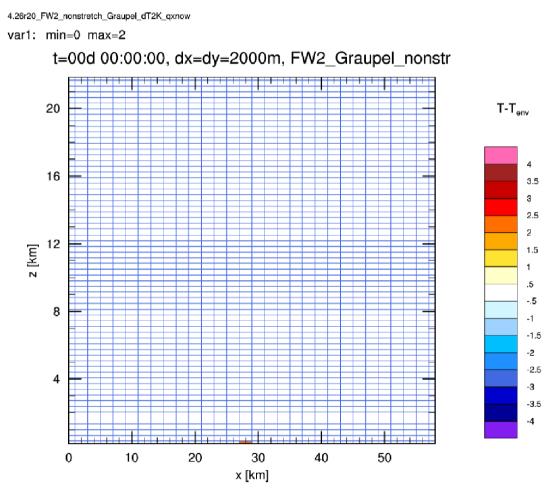
$$\frac{\partial w}{\partial t} + \mathbf{v} \cdot \nabla w = -\frac{1}{\rho} \frac{\partial p'}{\partial z} + g \left(\frac{p_0}{p} \frac{T'}{T_0} - \frac{p'}{p} + \frac{p_0}{p} \frac{T}{T_0} q_x \right) + \dots$$
$$-g \frac{\rho'}{\rho}$$

Moisture correction in ideal gas law: (water loading)

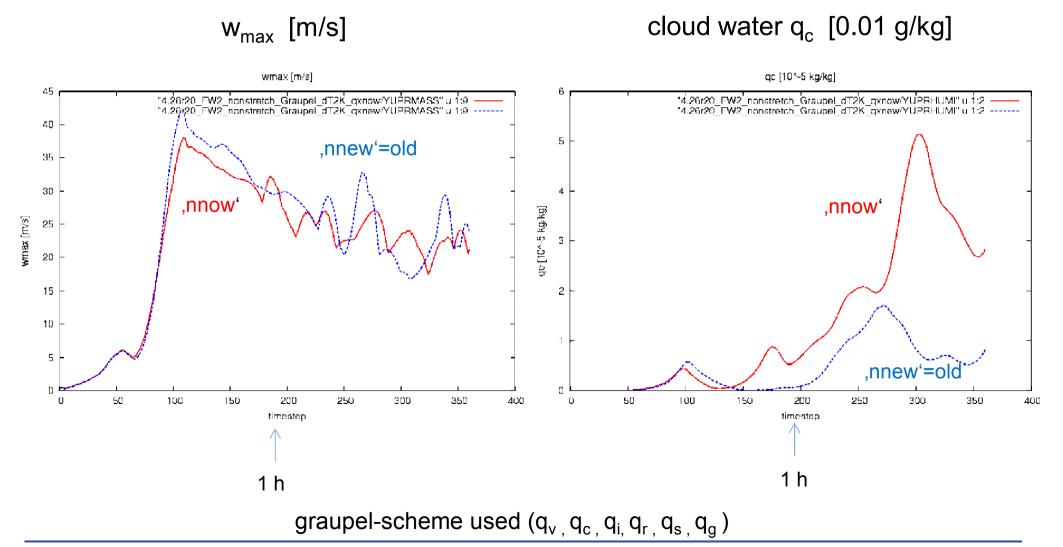
$$q_x := \left(\frac{R_v}{R_d} - 1\right) q_v - q_c - q_r - \dots$$

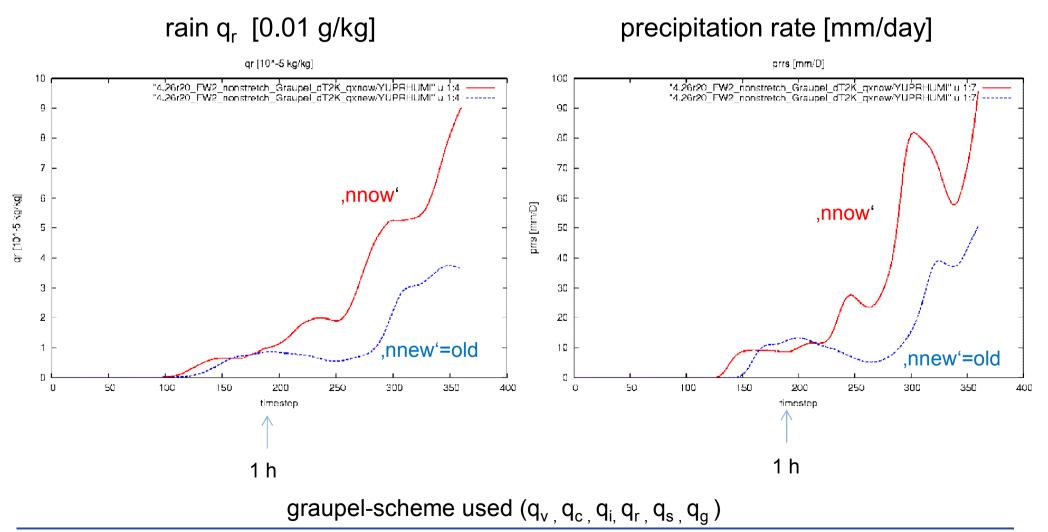
RK-scheme with new fast waves solver:

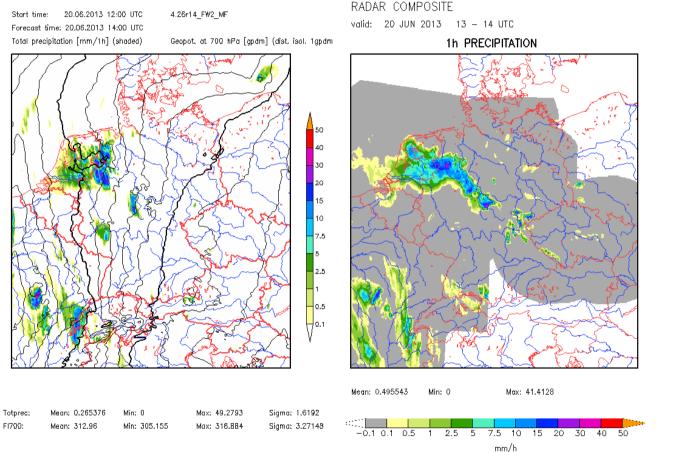
- moisture variables q_v, q_c, \dots in q_x at timelevel nnew 4.27:
- moisture variables q_v, q_c, \dots in q_x at timelevel nnow 4.28: reason: during the RK-scheme nnew still means ,old' for the moisture variables!

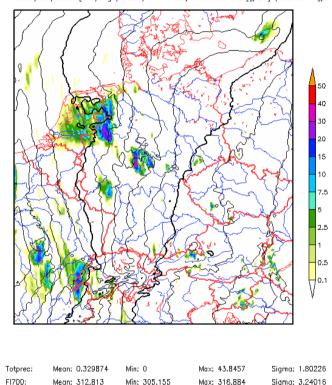

This bug fix is important in strongly convective situations

Idealised convection test at the resolution limit of the model


- T-perturbation ∆T=+2K in only one grid box (in z~500m)
- Stratification analogous to Weismann, Klemp (1982) MWR
- Atmosphere at rest
- No turbulence, only cloud physics
- Non-stretched grid


Idealised convection test at the resolution limit of the model

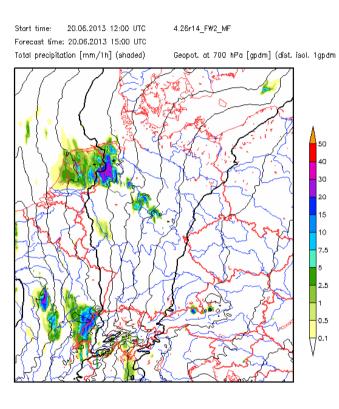

Idealised convection test at the resolution limit of the model


,nnew'

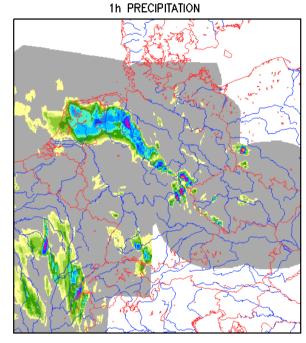
,nnow'

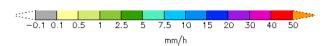
4.26r18_FW2_MF_qxnow Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 14:00 UTC Total precipitation [mm/1h] (shaded)

Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm


Front coming in at evening; convergence line during afternoon with heavy precipitation

Radar


,nnew'


Totprec:	Mean: 0.313589	Min: -0.000976562 Max: 41.9834	Sigma: 1.84055
FI700:	Mean: 312.535	Min: 304.535 Max: 319.068	Sigma: 3.49868

Radar

RADAR COMPOSITE valid: 20 JUN 2013 14 - 15 UTC

Mean: 0.622713 Min: 0 Max: 87.1358

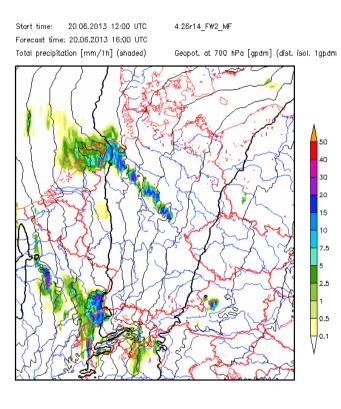


,nnow'

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 15:00 UTC Total precipitation [mm/1h] (shaded)

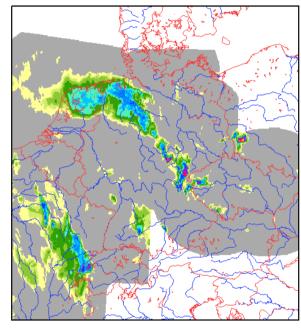
4.26r18_FW2_MF_qxnow

Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

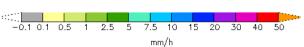


Totprec:	Mean: 0.412132	Min: -0.000976562	Max: 53.6875	Sigma: 2.2539
F1700:	Mean: 312.268	Min: 304.47	Max: 319.066	Sigma: 3.46151

,nnew'



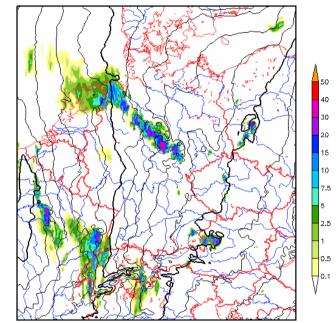
Totprec:	Mean: 0.348036	Min: O	Max: 70.5938	Sigma: 1.913
FI700:	Mean: 312.133	Min: 304.403	Max: 318.77	Sigma: 3.50543



Radar

RADAR COMPOSITE valid: 20 JUN 2013 15 - 16 UTC 1h PRECIPITATION

Max: 95,7285 Mean: 0.658538 Min: 0

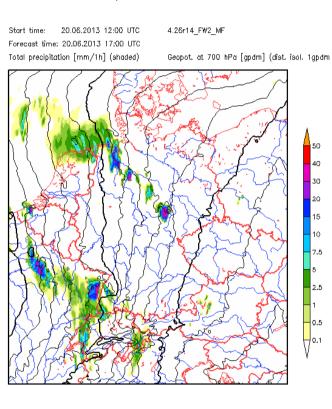


,nnow'

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 16:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

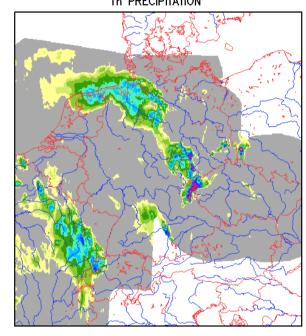
Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm



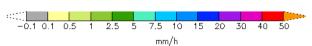
Totprec:	Mean: 0.441332	Min: O	Max: 48.793	Sigma: 2.25112
F1700:	Mean: 311.809	Min: 304.316	Max: 318.77	Sigma: 3.47157

,nnew'

Max: 52.5215


Max: 318,871

Sigma: 1.95767


Siama: 3.57328

Radar

RADAR COMPOSITE valid: 20 JUN 2013 16 - 17 UTC 1h PRECIPITATION

Mean: 0,709479 Min: 0 Max: 79,7829



,nnow'

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 17:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

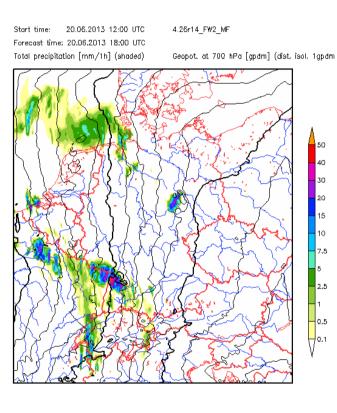
Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

Totprec:	Mean: 0.400331	Min: O	Max: 50.377	Sigma: 1.99425
FI700:	Mean: 311.753	Min: 304.07	Max: 318.871	Sigma: 3.55118

Totprec:

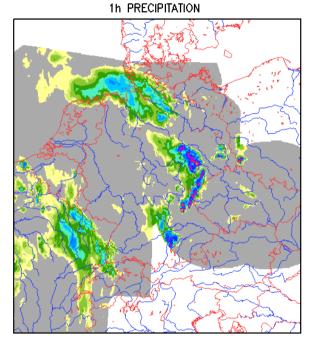
FI700:

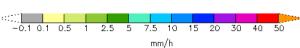
Mean: 0.340958

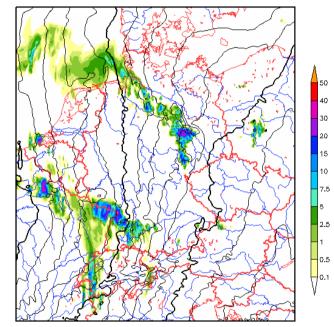

Mean: 312.07

Min: 0

Min: 304.07


,nnew'


Totprec:	Mean: 0.341901	Min: O	Max: 52.709	Sigma: 1.89745
FI700:	Mean: 312,105	Min: 304.263	Max: 318.798	Sigma: 3.61613



,nnow'

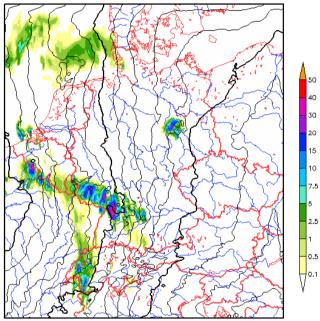
Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 18:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

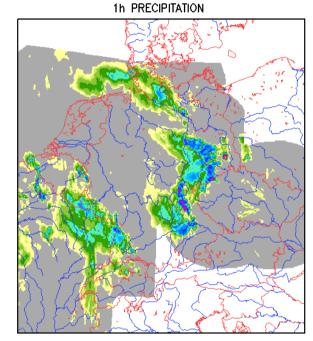
Totprec:	Mean: 0.408515	Min: O	Max: 38.5	Sigma: 1.91999
F1700:	Mean: 311.759	Min: 304.263	Max: 318.798	Sigma: 3.60768

,nnew'

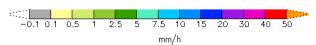

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 19:00 UTC Total precipitation [mm/1h] (shaded)

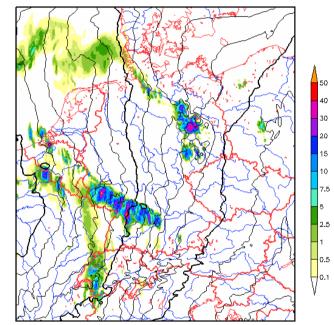
4.26r14_FW2_MF Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

> 50 40 30


> > 20

10


Totprec:	Mean: 0.341206	Min: 0	Max: 56.2754	Sigma: 1.83598
FI700:	Mean: 312.012	Min: 304.108	Max: 318.866	Sigma: 3.71331

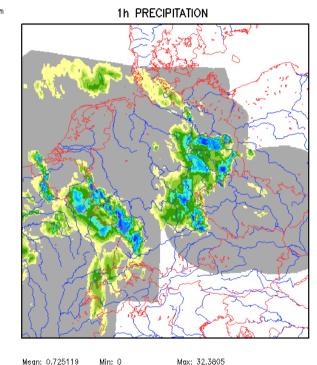


,nnow'

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 19:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm


Totprec:	Mean: 0.475635	Min: O	Max: 57.1387	Sigma: 2.42674
F1700:	Mean: 311.594	Min: 304.09	Max: 318.866	Sigma: 3.71939

,nnew'

Start time: 20.06.2013 12:00 UTC 4.26r14_FW2_MF Forecast time: 20.06.2013 20:00 UTC Total precipitation [mm/1h] (shaded) Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

Radar

RADAR COMPOSITE

50 40

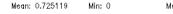
30

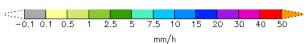
20

10

0.5

0.1

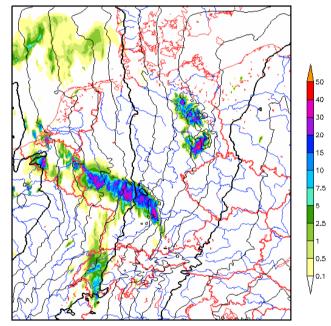

Sigma: 2.36812


Siama: 3.76957

Max: 63.959

Max: 319.038

valid: 20 JUN 2013 19 - 20 UTC



,nnow'

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 20:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

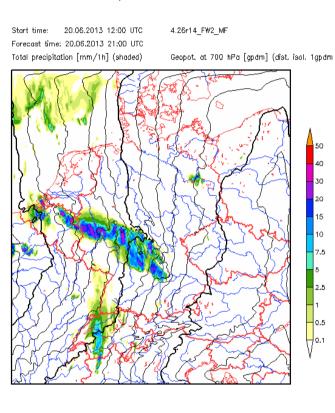
Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

Totprec:	Mean: 0.531288	Min: O	Max: 56.5	Sigma: 2.77347
F1700:	Mean: 311.373	Min: 303.817	Max: 319.038	Sigma: 3.7561

Totprec:

FI700:

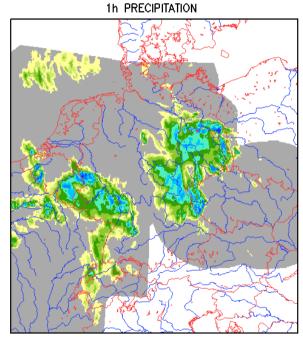
Mean: 0.416513

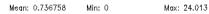

Mean: 311.838

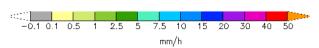
Min: 0

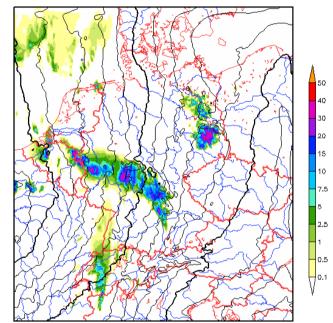
Min: 304.03

,nnew'




Totprec:	Mean: 0.420527	Min: O	Max: 53.4863	Sigma: 2.22193
F1700:	Mean: 311.481	Min: 303.598	Max: 318.881	Sigma: 3.81183





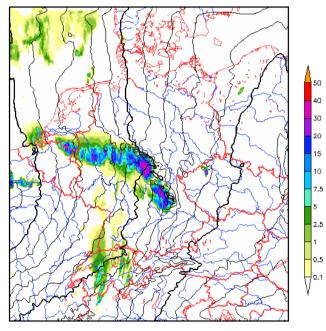
,nnow'

Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 21:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

Totprec:	Mean: 0.474554	Min: O	Max: 52.0176	Sigma: 2.45733
F1700:	Mean: 311.077	Min: 303.598	Max: 318.881	Sigma: 3.79116

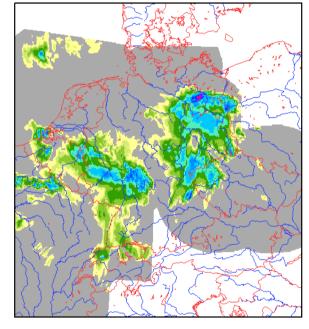


,nnew'

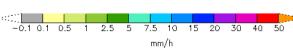
Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 22:00 UTC Total precipitation [mm/1h] (shaded)

4.26r14_FW2_MF Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

> 20 15 10



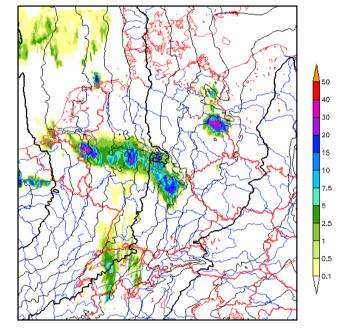
Totprec:	Mean: 0.417346	Min: O	Max: 45.7441	Sigma: 2.26247
FI700:	Mean: 311.277	Min: 303.802	Max: 319.114	Sigma: 3.72163


Radar

RADAR COMPOSITE valid: 20 JUN 2013 21 - 22 UTC

1h PRECIPITATION

Totprec:	Mean: 0.405306	Min: O	Max: 50.3535	Sigma: 2.07876
FI700:	Mean: 311.064	Min: 303.782	Max: 319.114	Sigma: 3.72039



,nnow'

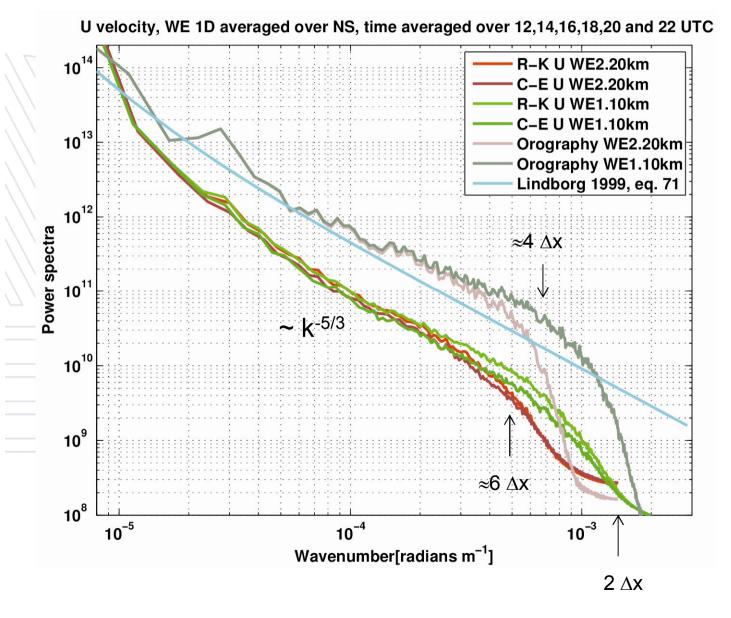
Start time: 20.06.2013 12:00 UTC Forecast time: 20.06.2013 22:00 UTC Total precipitation [mm/1h] (shaded)

4.26r18_FW2_MF_qxnow

Geopot. at 700 hPa [gpdm] (dist. isol. 1gpdm

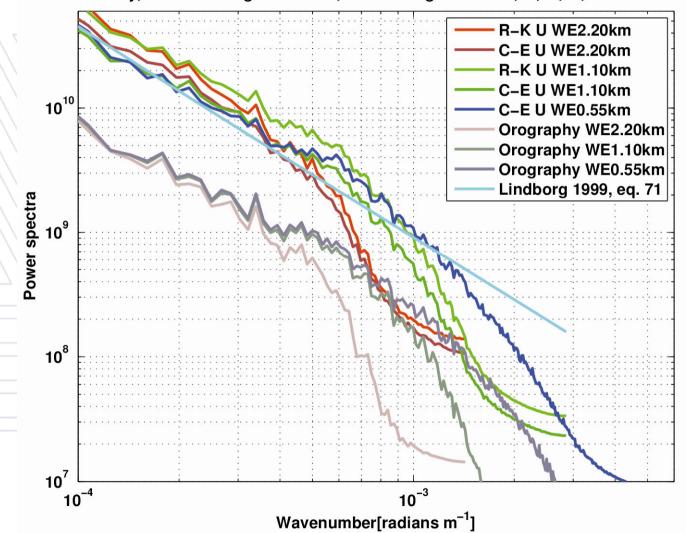
Kinetic energy spectra in COSMO/EULAG

Z. Piotrowski, M. Kurowski, B. Rosa, M. Ziemianski (IMGW)


We evaluate power spectra for COSMO-EULAG and COSMO-RK at 2.2 km and 1.1 km. In addition, we examine power spectra for 0.55 km and 0.28 km COSMO-EULAG simulations on a limited domain.

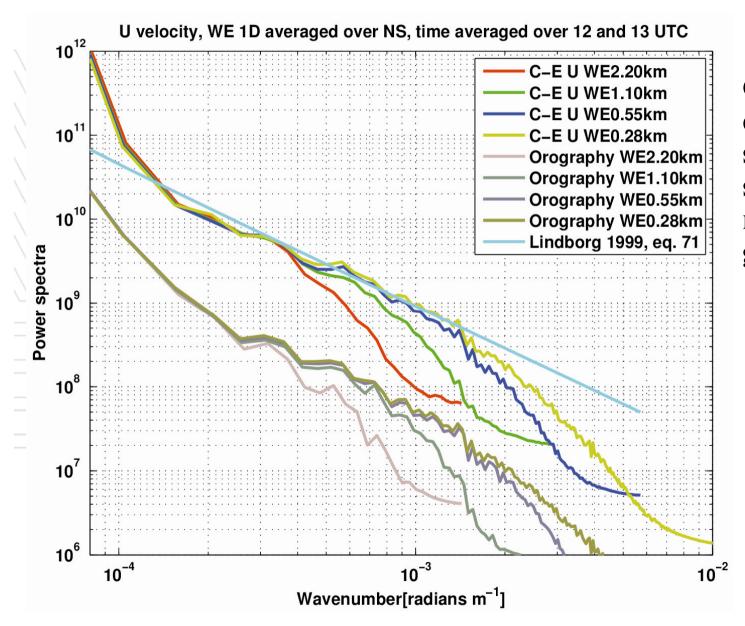
Methodology follows Skamarock 2004 "Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra" paper, applied to a stable autumn period.

For the 2.2 km and 1.1 km both dynamical cores exhibit similar response to the increasing resolution.


Kinetic energy spectra 2.2 km and 1.1 km

Comparision of kinetic energy spectra for CE and RK simulations of stable scenario for 26th -36th model level above the ground.

Note that spectra pairs (2.2 km red and 1.1 km green) for CE and RK compare similarily to the reference slope (blue).



U velocity, WE 1D averaged over NS, time averaged over 12,14,16,18,20 and 22 UTC

Comparision of kinetic energy spectra for CE and RK simulations of stable scenario for 26th -36th model level above the ground (only tail of the spectrum is shown)

Kinetic energy spectra 2.2 km, 1.1 km, 0.55 km and 0.28 km on limited domain

Comparision of kinetic energy spectra for CE simulations of stable scenario for 26th - 36th model level above the ground

New Bott advection operator with deformational correction

W. Schneider, A. Bott (Univ. Bonn), U. Blahak (DWD)

Currently used tracer advection scheme (*Bott (1989) MWR*) is based on operator-split 1D finite-volume operations \rightarrow tendency to instability in steep terrain \leftarrow Strang-splitting increases stability (but expensive)

Atmospheric Research 97 (2010) 619-631

Improving the time-splitting errors of one-dimensional advection schemes in multidimensional applications

Andreas Bott

Meteorological Institute University of Bonn, Germany

Bott scheme with deformational correction: basic idea

In the Cartesian (x_1, x_2, x_3) -coordinate system the transport equation for a substance with mass density ψ is given by

$$\frac{\partial \Psi}{\partial t} = -\nabla \cdot (\Psi \mathbf{v}) = -\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} (\Psi \dot{x}_{i})$$

In order to derive the consistent form of the advection scheme, Eq. (1) is formally rewritten as

$$\frac{\partial \psi}{\partial t} = -\sum_{i=1}^{3} \left(\frac{\partial}{\partial x_i} (\psi \dot{x_i}) - \psi \frac{\partial \dot{x_i}}{\partial x_i} \right) - \psi \nabla \cdot \mathbf{v}$$

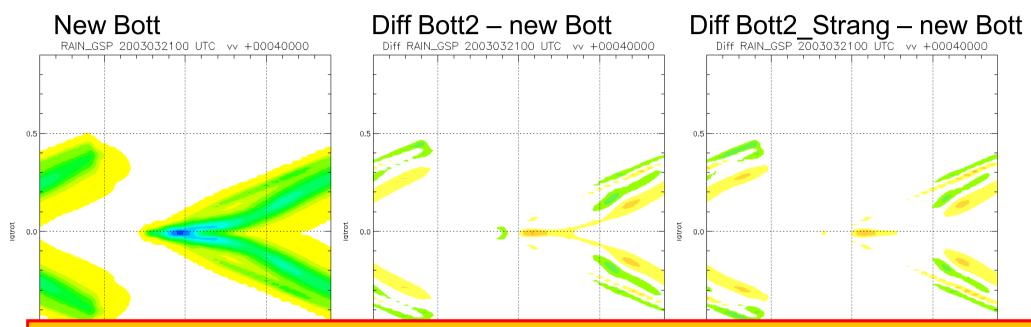
(4)

Obviously, the second and third term on the right-hand side of this equation cancel each other. Eq. (4) is now solved by means of the following time-splitting approach

$$\begin{split} \psi_1^n &= \psi_0^n - \left(F(\psi_0^n, \dot{x}_r^n) - \psi_0^n \frac{\partial \dot{x}_r^n}{\partial x_r} \Delta t \right) \\ \psi_2^n &= \psi_1^n - \left(F(\psi_1^n, \dot{x}_s^n) - \psi_0^n \frac{\partial \dot{x}_s^n}{\partial x_s} \Delta t \right) \\ \psi^{n+1} &= \psi_2^n - \left(F(\psi_2^n, \dot{x}_t^n) - \psi_0^n \frac{\partial \dot{x}_t^n}{\partial x_t} \Delta t \right) - \psi_0^n \nabla \cdot \mathbf{v} \Delta t \\ &= \psi_2^n - F(\psi_2^n, \dot{x}_t^n) - \psi_0^n \left(\frac{\partial \dot{x}_r^n}{\partial x_r} + \frac{\partial \dot{x}_s^n}{\partial x_s} \right) \Delta t \end{split}$$
(5)

Strain deformation terms Their sum = divergence

Properties:


- Exactly consistent
- Exactly conserving
- Almost shape preserving
- Positive definite
- Bonn group claims:
 - Increased stability in steep terrain
 - No need for "true strang splitting" any more

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Accumulated rain after 4 h

Current implementation:

Coupling of separate Bonn code by Werner Schneider, vectorization by Ulrich Blahak.

Good for current testing, but new implementation based on the existing COSMO routines of the Bott schemes would be desireable!

Thank you for your attention!

