Recent developments with SURFEX coupled to ALARO

Rafiq Hamdi and Annelies Duerinckx

Royal Meteorological Institute, Brussels, Belgium.

EWGLAM, Antalya, 1st October 2013

SURFEX/EKF: A NEW DATA ASSIMILATION METHOD

SURFEX: A NEW LAND SURFACE SCHEME FOR REGIONAL CLIMATE APPLICATIONS

surfex in operational applications

SURFEX: A NEW LAND SURFACE SCHEME FOR ALARO NWP

SURFEXFERF: A NEW DATA ASSIMILATION METHOD

SURFEX: A NEW LAND SURFACE SCHENE FOR REGIONAL CLIMATE APPLICATIONS

tiling approach

Tiling

One important feature of the externalized surface: each grid cell is divided into 4 elementary units called tiles according to the fraction of covers in the grid cell

inline and offline mode

OFFLINE MODE

albedo emissivity radiative temperature momentum flux sensible heat flux latent heat flux CO_2 flux chemical flux

* 100 *

Atmospheric forcing Sun position Downward radiative flux

Mean Flux

INLINE MODE

Surfex output as surface boundary conditions for atmospheric radiation and turbulent scheme.

albedo emissivity radiative temperature momentum flux sensible heat flux latent heat flux CO₂ flux chemical flux

ALARO model

Atmospheric forcing Sun position Downward radiative flux

EWGLAM, Antalya, 1st October 2013, (6/25)

alaro 2m temperature with surfex

ALARO-OPER # ALARO-SURFEX 7km run over Belgium

100

belspo.**D**C

EWGLAM, Antalya, 1st October 2013, (7/25)

alaro 2m temperature with surfex

ALARO-OPER # ALARO-SURFEX 7km run over Belgium

alaro 2m temperature with surfex

ALARO-OPER # ALARO-SURFEX 7km run over Belgium

BIAS-July 2010: Uccle-Ukkel

Forecast time since 0000 UTC

RMSE-January 2010: Uccle-Ukkel

RMSE–July 2010: Uccle–Ukkel

Politique scientifique fédérale

belspo,

EWGLAM, Antalya, 1St October 2013, (9/25)

belspc

ALARO-OPER # ALARO-SURFEX 7km run over Belgium

Table 2. The average daytime/nighttime scores for the flat/high elevation and coastal synoptic stations, sign (+) means improvement, sign (0) means neutral effect, and sign (-) means degradation of the scores.

		Winter _{NIGHT}	Winter _{DAY}	Summer _{NIGHT}	Summer _{DAY}
2m Temperature	Flat	+	+	+	0
	High	0	-	0	+
	Coast	0	0	+	0
Wind speed at 10m	Flat	+	0	+	0
	High	0	0	0	0
	Coast	+	0	+	0
Wind direction at 10m	Flat	0	0	0	0
	High	0	0	0	0
	Coast	0	0	0	0
2m Relative humidity	Flat	+	+	+	0

alaro 2m temperature with surfex

ALARO-OPER # ALARO-SURFEX 4km run at CABAUW

(100

RMSE-January 2010: Cabauw

RMSE–July 2010: Cabauw

belspo.**D**C

EWGLAM, Antalya, 1St October 2013, (11/25)

belsp

ALARO-OPER # ALARO-SURFEX 4km run at CABAUW

Table 5. The average daytime/nighttime scores for the radiative balance, energy balance at the Cabauw tower station, sign (+) means improvement, sign (0) means neutral effect, and sign (-) means degradation of the scores.

	Winter _{NIGHT}	Winter _{DAY}	$Summer_{\text{NIGHT}}$	Summer _{DAY}
Radiative Balance				
Long wave↓	0	0	0	0
Long wave↑	0	0	+	0
Short wave↓	0	0	0	0
Short wave↑	0	0	0	+
Energy Balance				
Latent heat flux	0	+	0	+
Sensible heat flux	0	0	0	+
Storage heat flux	+	+	+	+

alaro with surfex and teb

ALARO-SURFEX # ALARO-SURFEX-TEB 4km run

1913

belspo**.D**C

EWGLAM, Antalya, 1St October 2013, (13/25)

alaro with surfex and teb

ALARO-SURFEX # ALARO-SURFEX-TEB 4km run

EWGLAM, Antalya, 1St October 2013, (14/25)

alaro with surfex and teb

ALARO-SURFEX # ALARO-SURFEX-TEB 4km run

(* 100) 1913

BIAS-July 2010: Uccle-Ukkel

RMSE-July 2010: Uccle-Ukkel

ue scientifique fédéral

belspo**.D**C

EWGLAM, Antalya, 1St October 2013, (15/25)

EWGLAM, Antalya, 1st October 2013, (16/25)

SURFEX: A NEW LAND SURFACE SCHENE FOR ALARO NWP

SURFEX/EKF: A NEW DATA ASSIMILATION METHOD

SURFEX: A NEW LAND SURFACE SCHENE FOR REGIONAL CLIMATE APPLICATIONS

plan

Politique scien

belspo

The EKF equation:

$$\mathbf{x}_t^a = \mathbf{x}_t^b + \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}[\mathbf{y}_t^o - \mathcal{H}(\mathbf{x}_o^b)]$$

The observation operator (includes a model propagation): $\mathcal{H}(.) \sim \mathbb{H}(\mathbb{M}(.))$

The Jacobian of the observation operator: <u>(calculated with finite differences)</u>

$$\mathbf{H} = \frac{\delta y^t}{\delta x^{t_0}} = \frac{y_i^t (x^{t_0} + \delta x_j) - y_i^t (x^{t_0})}{\delta x_j}$$

EWGLAM, Antalya, 1st October 2013, (17/25)

belspo

$$\mathbf{H} = \frac{\delta y^{t}}{\delta x^{t_0}} = \frac{y_i^{t}(x^{t_0} + \delta x_j) - y_i^{t}(x^{t_0})}{\delta x_j}$$
Calculation of the Jacobian:

- Perturb a component x_j of the control vector at time to
- Make a forecast to time t with the perturbed state
- Use the corresponding y_i at time t

--> one additional perturbed run for each component of the control

NEW DATA ASSIMILATION METHOD

Jacobian of the EKF in SURFEX

Evolution of dT2m/dWG1 (red) and dT2m/dWG2 (black) at 2 July 2010 from 12 UTC to 18 UTC with timestep 300s (left) and timestep 60s (right)

EWGLAM, Antalya, 1St October 2013, (19/25)

belspo

Problem:

Decoupling of the surface and the atmosphere during sunset

• Creates very small oscillations in the fluxes BUT big oscillations in the Jacobian values

Solution:

- Filter the oscillation
- Use Canopy
- Use forcing files from an earlier run so the atmosphere has more time to adjust to the surface

NEW DATA ASSIMILATION METHOD

100 x

scores of the EKF in SURFEX

belspo.**De**

2m Relative Humidity RMSE (01-31 July 2010) run 0

Forecast time since 0000 UTC

Forecast time since 0000 UTC

EWGLAM, Antalya, 1St October 2013, (21/25)

SURFEX/EKF: A MEW DATA ASSIMILATION METHOD

SURFEX: A NEW LAND SURFACE SCHEME FOR REGIONAL CLIMATE APPLICATIONS

plan

regional climate runs

Dynamical downscaling using regional climate models (RCM)

ALARO+SURFEX INLINE 40 km \rightarrow 4km

x 100

SURFEX OFFLINE 1 km

EWGLAM, Antalya, 1St October 2013, (23/25)

regional climate runs

T MAX ERA-int [2001-2010] 17 16.5 UHI of Brussels 16.0 2.9 2.7 15.5 2.5 15.0 2.3 14.5 2.1 14.0 1.9 13.5 1.7 13.0 1.5 12.5 1.3 12.0 1.1 0.9 11.5 0.7 11.0 0.5 0.3 10.5 10.0 9.5 belspo.**D**

EWGLAM, Antalya, 1st October 2013, (24/25)

papers

1. Hamdi, R., Degrauwe, D., Duerinckx, A., Cedilnik, J., Costa, V., Dalkilic, T., Essaouini, K., Jerczynki, M., Kocaman, F., Kullmann, L., Mahfouf, J.-F., Meier, F., Sassi, M., Schneider, S., Váňa, F., and Termonia, P.: Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models, Geosci. Model Dev. Discuss., 6, 4053-4104, doi:10.5194/gmdd-6-4053-2013, 2013.

2. Combining an EKF soil analysis with a 3dVar atmospheric assimilation in a limited area NWP model. Duerincks et al. QJRMS to be submitted.

belspo