Handling of orography in NWP models - topics for discussion

Laura Rontu Finnish Meteorological Institute, HIRLAM-B

20th SRNWP meeting 30th September – 3rd October 2013 Antalya, Turkey

CONTENTS

Why surface elevation in NWP? What do we know about the surface elevation? **Renewal of the oroparameters** How to use oroparameters for parametrizations? HIRLAM experiments over Caucasia Perturbing orography? A Caucasian testbed?

WHY SURFACE ELEVATION IN NWP?

Basis of the vertical coordinate in model dynamics

Data assimilation and validation using observations at some elevation from surface

Parametrisation of momentum and radiation fluxes depending on orography

WHY SURFACE ELEVATION IN NWP?

Basis of the vertical coordinate in model dynamics - smoothness

Data assimilation and validation using observations at some elevation from surface

- details, consistency

Parametrization of momentum and radiation fluxes depending on orography

- (statistical) parameters, consistency of scales and surface types

What do we know about the surface elevation?

Caucasian mountains, Mount Elbrus and Sochi Olympics venue Krasnaya Polyana+

Try a grid there: ECMWF, deltax 15 km (this here is one gridbox!)

Mean elevation Measure of variance: standard deviation > roughness Slopes and slope directions Description of the surface: orography gradient correlation tensor

$$H_{ij} = \frac{\overline{\partial h}}{\partial x_i} \frac{\partial h}{\partial x_j}$$

 + statistical measures in sub-grid scale, to be applied by parametrizations

AROME, deltax 2.5 km

We know this from gtopo30, deltax 1 km

... or this from SRTM, deltax < 100 m

... or this from GMTED2010, deltax 250 m

Renewal of the oroparameters

Derivation of parameters for dynamics and parametrisations, based on the highest resolution global digital elevation data

WHY?

 Consistency within the models
Understanding the sensitivities of atmosphere-orography interactions
Revision of the orography-related parametrizations
Very fine resolution (VFR) modelling

Dynamics: smooth enough mean elevation for the vertical coordinate

Parametrizations

 $\frac{\partial \vec{v}}{\partial t} = -\vec{v} \cdot \nabla_{\zeta} \vec{v} - \dot{\zeta} \frac{\partial \vec{v}}{\partial \zeta} - \frac{1}{\rho} \nabla_{\zeta} p - \nabla_{\zeta} \Phi - f \vec{k} \times \vec{v} - \frac{g}{p_s} \frac{\partial \vec{\tau}}{\partial \zeta}$ $\frac{\partial T}{\partial t} = -\vec{v} \cdot \nabla_{\zeta} T - \dot{\zeta} \frac{\partial T}{\partial \zeta} - \frac{1}{c_p} \left(\frac{g}{p_s} \frac{\partial F_t}{\partial \zeta} + \frac{g}{p_s} \frac{\partial F_t}{\partial \zeta} + F_c\right)$

 $\tau_s \sim f_1(\text{orography}(x,y)), f_2(\text{flow}(x,y,z,t))$

 $F_{rs} \sim g_1(\text{orography}(x,y,t)), g_2(\text{radiation flux}(x,y,z,t))$

How to determine the orography-dependent functions?

VARIABLES DERIVED FROM THE FINEST-RESOLUTION SOURCE DATA: There is more than the mean elevation!

parameter	description	unit	usage	scale (km)	filtering
$\mathrm{H}_{k\Delta x}$	mean surface elevation	m	dynamics	$> k\Delta x$	low-pass
s_t	mean maximum small-scale slope	rad	SSO	< 1 km	high-pass
σ_t	small scale standard deviation	m	SSO	< 1 km	high-pass
σ_m	mesoscale standard deviation	m	MSO	$1 \text{ km} \dots k\Delta x$	band-pass
α	coefficient of anisotropy	-	MSO	$1 \text{ km} \dots k\Delta x$	band-pass
Θ	x-angle of orography gradient	rad	MSO	$1 \text{ km} \dots k\Delta x$	band-pass
s_m	mean maximum mesoscale slope	rad	MSO	$1 \text{ km} \dots k\Delta x$	band-pass
$h_{m,i}$	slope (in direction <i>i</i>)	rad	radiation	full resolution	none
f_i	fraction of slope (in direction i)	-	radiation	full resolution	none
$h_{h,i}$	local horizon (in direction i)	rad	radiation	full resolution	none

Typically, the empirical coefficient k in $k\Delta x$ could be given a value 1...3 in mesoscale models.

HOW TO USE OROPARAMETERS FOR PARAMETRIZATIONS: RADIATION

Slope, shadow and sky view factors

$$\delta_{sl} = \sin(h_s) + \cos(h_s) \sum_{i=1}^{8} f_i \tan(h_{m,i}) \cos(a_s - a_{m,i}),$$
(1)

where f_i is the fraction and $h_{m,i}$ the mean height angle of the slopes in each sector *i*, centred at (8) azimuth angles $a_{m,i} = 0^\circ$, $45^\circ, \ldots, 270^\circ, 315^\circ$ (N, NE, E, SE, S, SW, W, NW-note that the

slope factor for direct solar radiation For the calculation of the shadow factor, minimum and maximum values of $h_{h,i}$ are found in each sector. Direction-dependent coefficients A_i and B_i are determined so as to fulfil a linear relationship

 $\delta_{sh,i} = A_i \sin(h_s) + B_i,$

3)

summation of the sectorial local horizon values $h_{h,i}$,

shadow factor for direct solar radiation

$$\delta_{sv} pprox 1 - rac{\sum_{i=1}^8 \sin(h_{h,i})}{8}.$$

sky view factor for LW and diffuse SW

HOW TO USE OROPARAMETERS FOR PARAMETRIZATIONS: MESOSCALE MOMENTUM FLUXES

3.1.1 Generation of the wave stress

The generation of wave stress $\vec{\tau}_s$ [Pa] at the surface is calcu

 $\vec{\tau}_s(x,y) = K_g \cdot \rho_s \cdot N_s \cdot \vec{v}_{fs} \cdot h_m^2,$

where the index s refers to the effective near-surface values

MSO slope = steepness anisotropy = round or long MSO standard deviation = height xangle = slope direction $* H_{ij} = \frac{\partial h}{\partial x_i} \frac{\partial h}{\partial x_j}$

In each gridbox there lives one statistical ellipsoid!*

HOW TO USE OROPARAMETERS FOR PARAMETRIZATIONS: SMALLEST-SCALE MOMENTUM FLUXES

Wood et al. (2001) and Brown and Wood HIRLAM and used instead of the orograp to the small scale orographic features is es $\vec{\tau}_o(z) = C_o \frac{\vec{\tau}_{ts}}{\rho_s} s_t^2 \rho(z) e^{-z/l_o} = \vec{\tau}_{os} f(z)$

where C_o is an orographic drag coefficient,

SSO slope = steepness in the sub-kilometre-scale

Two small changes were made to the SSO parametrizations compared to Rontu (2006). First, the parametrized surface orographic stress $\vec{\tau}_{os} = C_o \frac{\vec{\tau}_{ts}}{\rho_s} s_t^2$ (where C_o is SSO drag coefficient, $\vec{\tau}_{ts}$ denotes surface turbulent stress, ρ_s is surface air density and and s_t is the SSO slope parameter) is added to the surface turbulent stress and transmitted to the vertical diffusion (CBR) scheme, instead of using a simple exponential decay of the stess suggested by Wood et al. (2001) and used

RENEWAL OF OROGRAPHY PARAMETERS

Take the most detailed global digital elevation data (SRTM – ASTER – Pan-Arctic DEM ...), improve & convert into needed by NWP input

Do (spectral) filtering in order to separate scales for derivation of variables for

- Model dynamics
- Orographic buoyancy wave parametrisations (MSO)
- Smallest scale orographic effects on momentum fluxes (SSO)
- Orographic radiation parametrisations

SRTM – ASTER -PANARCTIC DEM - VIEWFINDER... In GeoTIFF

> Processing with GDAL tools

High resolution digital elevation sources ca. 100 m horizontal / 20 m vertical

Correct surface elevation and slopes in

the original high resolution grid and format

Combined, cleaned, processed by available tools to get

CORRECTED SURFACE ELEVATION and SLOPE ANGLES In unformatted integer (gtopo)

Spectral filtering of elevation Derivation of scale-dependent oroparameters

Filtered and processed with the tools used in NWP models (e.g. SURFEX PGD and AROME spectral dynamics) to get

OROPARAMETERS FOR NWP DYNAMICS AND PARAMETRISATIONS In model grid

Needed oroparameters in the NWP model coordinates, resolution and file formats, also coordinated with land-sea mask etc

PROBLEMS OF (GLOBAL) DEM SOURCES

Limited geographical extent 55 S – 60 N (max 82 N) Gaps, artifacts, errors

Raw ASTER tile : N62E045

ASTER tile N62E045 corrected

Nicolas Bauer, FMI, 2012

HIRLAM experiments over Caucasia

Hydrostatic, deltax 3.5 km, January 2013 Oroparameters prepared from SRTM (100m), compared with those from hydro1k (1km) sources and reference HIRLAM with gtopo30 mean elevation

Experiments

hircau0 - reference HIRLAM, but no oroparametrizations

hircau1 - all oroparametrizations, old hydro1k parametres

hircau2 - all oroparametrizations, SRTM with 3deltax smoothing for dynamics

hircau3 - all oroparametrizations, SRTM with 1deltax smoothing for dynamics

HIRLAM experiments over Caucasia

Very first conclusions

Some orographic parametrizations are needed both for radiation and momentum fluxes

Try to resolve as much with dynamics and smooth as little as possible

Derivation of oroparameters from the fine-resolution SRTM sources is useful especially for the radiation parametrizations

The methods and data from HIRLAM are available for HARMONIE and other models for application and further development

Experiments

hircau0 - reference HIRLAM, but no oroparametrizations

hircau1 - all oroparametrizations, old hydro1k parametres

hircau2 - all oroparametrizations, SRTM with 3deltax smoothing for dynamics

hircau3 - all oroparametrizations, SRTM with 1deltax smoothing for dynamics

PERTURBING THE OROGRAPHY?

... from the Midsummer discussions in the SRNWP EPS WS in Madrid, 2013:

- 3. Are there untouchables, e.g. perturbing orography, gravity constant or other fundamentally known functions?
 - Do not touch what makes our planet's atmosphere what it is (Ω, g, R (not R_d alone though, of course), L_v/s, c_p)
 - Orography can be seen from two sides:
 - For the resolved (dynamical) part it may be changed but in a multi-model spirit (not randomly, so to say)
 - For the sub-grid and residual (physical) part, perturbing parameterisation input (variance, z_0, ...) should be preferable to touching the resolved part. Neva can repeat her tests and see the differences/convergences, this will be instructive.

PERTURBING THE OROGRAPHY?

We know the details of orography far better than we are presently able to use: let us not disturb the true information but try to apply it in the models, instead of making virtue of our present ignorance

In the atmosphere – orography interactions there are <u>two</u> <u>partners</u>: a different (perturbed in any way) air flow over the same mountains leads to different weather, even without perturbing the elevation of the Earth's surface

We can make <u>conscious choices</u>: how much to resolve, what to parametrize, how to handle the effects due to the different scales of orography - there is a need to understand more, plenty of space for sensitivity studies and alternative solutions which could benefit also EPS developments

A CAUCASIAN TESTBED?

Semi-finished source data, based on SRTM, are available: elevation, smoothed elevation, slopes ...

Methods for calculation and aggregation of orographic variables into model resolution grids exist for HIRLAM, could be tried and developed further in other models

There is a need, possibilities and ongoing activities for mesoscale model studies over the Caucasian area related to the winter Olympic games 2014

Perhaps we could launch a cross-consortium mountain group (within the SRNWP Surface Expert Team?), to plan Caucasian orographic experiments and comparisons?

Thank you!