## NWP-application "Wind power in cold climates"

SMH

WindREN AB

#### Heiner Körnich, Esbjörn Olsson, Per Undén, Ulf, Andrae, SMHI



## Meteorological needs for wind power production

- Site planning: Climatology for wind and icing
- Maintenance and safety
- Operation
  - Power production for electrical grid
  - Noise pollution
- Trading



NWP needs: Observations of wind, temperature, and power production for each turbine



#### **Modelling chain**





#### **Modelling chain**



However, ice product remains difficult to verify.



### **NWP model**

- Operational model of MetCoOp with MET Norway:
- HARMONIE-Arome cy38h1.1
- 2.5 km and 65 levels
- 3D-Var 3h-RUC
- Height adaption for wind, temperature and humidity



#### **Observations vs model**







#### **Verification of the production forecasts**

- March April 2014
- Using 06UTC run and forecast for next day
- Only very modest icing
- Assumption: all turbines are working.

| Station | Approx. Ideal production | Bias    | Std dev     | Correla-<br>tion |             |
|---------|--------------------------|---------|-------------|------------------|-------------|
| 1       | 500 MWh                  | 16 MWh  | 24 MWh      | 0.9              |             |
| 2       | 700 MWh                  | 70 MWh  | 171 MWh (?) | 0.9              |             |
| 3       | 500 MWh                  | 106 MWh | 172 MWh     | 0.54             | Ice and     |
| 4       | 500 MWh                  | 21 MWh  | 29 MWh      | 0.9              | StandStill: |
| 5       | 800 MWh                  | 66 MWh  | 59 MWh      | 0.9              |             |
| 6       | 600 MWh                  | 70 MWh  | 50 MWh      | 0.9              |             |



#### Modelling the ice load

- Makkonen Model (2000)
- Developed for ice growth on cylinder
- Additionally:
  - flux of precipitation
  - Sublimation, melting
  - shedding

 $\frac{Dm}{dt} = \alpha_1 \alpha_2 \alpha_3 w A V - Q$ 

 $\alpha_1 = \text{collision efficiency}_1$   $\alpha_2 = \text{sticking efficiency}_2$   $\alpha_3 = \text{accretion efficiency}_3$   $w^*A^*V = \text{Flux of water droplets}_3$ 



#### **Measuring of ice load**





Measuring ice load is not simple. Different techniques, but no one has proven to be totally reliable. Harsh environment.

"Results of the Vindforsk project V-363 with report "Experiences of different ice measurements methods" indicate that no technique and no instrument for measuring ice load or ice accretion can be trusted in every icing situation."

## Observations vs. model





### **Modelling production losses**

- Empirical relationship of modelled ice growth, ice load, and wind speed.
- Seasonally varying effect curves for each turbine from observed wind speed and power production.
- Assumption: All turbines are working.
- +18h- to +42h-forecast data from 06UTC-runs

# Ses Wind speed Ice growth 10 5 0 10 50 25 10 100 100 90



## Model vs observations







# Season of observed and modelled production losses

|          | lce<br>hour | Ideal<br>model<br>power<br>prod | Model<br>loss<br>with<br>ice | Ideal<br>power<br>prod from<br>obs wind | Obs<br>loss |
|----------|-------------|---------------------------------|------------------------------|-----------------------------------------|-------------|
| Month    | S           | (MWh)                           | (%)                          | (MWh)                                   | (%)         |
| October  | 35          | 505                             | 5                            | 521                                     | 1           |
| November | 99          | 617                             | 7                            | 487                                     | 7           |
| December | 221         | 821                             | 24                           | 683                                     | 9           |
| January  | 278         | 756                             | 38                           | 706                                     | 69          |
| February | 433         | 605                             | 71                           | 515                                     | 81          |
| March    | 209         | 758                             | 22                           | 675                                     | 14          |
| April    | 52          | 509                             | 5                            | 418                                     | 4           |



#### Summary

- Icing on wind turbines plays an important role for production and safety.
- High-resolution NWP forecasts for ice-free wind power production are useful.
- Ice load observations are not reliable, so verification of icing model is difficult.
- Modelled production losses shows useful information, but need improvement.
- Outlook: PhD-project on quantifying the uncertainties for production losses with a meso-scale EPS



WWW.COMBITECH.SE - Sveg 155 2010-03-31 CEST 11:06:22 Exposure time L:0.000ms R:0.656ms

#### Thank you!

