

GLAMEPS and HarmonEPS for Sochi Olympics

- and some plans for HarmonEPS

Inger-Lise Frogner

Lisa Bengtsson, John Bjørnar Bremnes, Alex Deckmyn, Thomas Nipen, Kai Sattler, Andrew T. Singleton, Ole Vignes, Xiaohua Yang

GLAMEPS is a common project for operational EPS in the short-range in the HIRLAM and ALADIN SRNWP consortia

Offenbach 1 October 2014

Sochi Olympics: The FROST project (Probabilistic part)

FROST=Forecast and Research in the Olympic Sochi Testbed

Goal:

- Regional meso-scale ensemble forecast products in winter complex terrain environment
- To deliver probabilistic forecasts in real time to Olympic weather forecasters and decision makers

HIRLAM involvement in FROST: (probabilistic part)

Three parts

- Raw GLAMEPSv1 FDP
- Calibrated GLAMEPSv1 for venues – RDP
- HarmonEPS RDP *but run in real time*

IFS ENS (ECMWF EPS) as baseline to compare against

Verification for 31 stations

OLYMPIC TEST PERIOD: 20140115 – 20140331

Introducing GLAMEPS (version 1):

Multi-model, pan-European EPS

54 ensemble members;

- 4 sub-ensembles:
- Two HIRLAM ensembles with 3D-Var for controls
- One Alaro ensemble (downscaling)
- 14 members of IFS ENS
- One deterministic (IFS DET)

Nested in IFS ENS

- Forecast range: 54h
- 06 and 18 UTC (IFS 00 and 12 UTC)
- All members have surface assimilation cycles
- Stochastic physics in HIRLAM
- Perturbed surface observations
- ~11 km resolution

Runs as Time-Critical Facility at ECMWF, Replaced by version 2: 26 September 2014

Black frame: Aladin domain Red domain: Hirlam domain and common output domain

Introducing HarmonEPS for Sochi:

Single-model (Arome), regional EPS

13 ensemble members Full DA (3D-Var) and 6 hour cycling for the control

Nested in IFS ENS

- Forecast range: 36h
- 06 and 18 UTC (IFS 00 and 12 UTC)
- All members have surface assimilation cycles
- ~2.5 km resolution

640 x 500 points

12h accumulated precipitation

Calibrating GLAMEPSv1

- Goal: Frequently updated forecasts (every hour)
- Probabilistic forecasts for 31 locations (venues)

Calibration method temperature:

Correct bias by weighting the bias from the last couple of days Update with latest observation Adjust ensemble spread to be in line with RMSE

Calibration method wind:

Correct by scaling up or down

Calibration method precipitation: Correct by scaling up or down

T2m

Summarizing with CRPS Perfect score: 0

Conclusions

- GLAMEPS scores better than, or at the same level as, IFS ENS
- Calibration is effective in improving the scores for GLAMEPS
- First tests with HarmonEPS: performs reasonably well, even for the simple configuration used here

Short about ongoing work and plans: HarmonEPS

Cellular Automata Stochastic scheme

- A large contribution to model construction error uncertainty stems from the statistical representation of deep convection.
- We have studied the impact of a stochastic deep convection parameterization using cellular automata described in Bengtsson et al. (2013), as implemented in the high resolution ensemble prediction system HarmonEPS.
- The scheme use cellular automata within the deep convection param. It is two-way coupled in convection scheme, constrained by CAPE

CAPE (J/kg)

thresholds nn/12h

Perturbing surface energy fluxes - a first experiment

A key weakness in EPS, particularly at the convection permitting scale, is under disperson of near surface parameters.

A method that perturbs the surface energy fluxes of heat and moisture is currently being tested in HarmonEPS

Surface fluxes in SURFEX

In SURFEX the surface is divided into tiles for ocean, inland water, nature and town. Turbulent fluxes for the nature tile are calculated using the classical bulk aerodynamic formulae:

$$H = \rho_a c_p C_H V_a (T_s - T_a) \tag{1}$$

$$E = \rho_a c_p C_H V_a (q_{sat}(T_s) - q_a) \tag{2}$$

where C_H is the exchange coefficient for heat and moisture:

$$C_H = C_{DN} F_h \tag{3}$$

$$F_{h} = \left[1 - \frac{15Ri}{1 + C_{h}\sqrt{|Ri|}}\right] \times \left[\frac{\ln(z/z_{0})}{\ln(z/z_{0h})}\right] ifRi \leq 0 \quad (4)$$

$$F_{h} = \frac{1}{1 + 15Ri\sqrt{1 + 5Ri}} \times \left[\frac{\ln(z/z_{0})}{\ln(z/z_{0h})}\right] ifRi > 0 \quad (5)$$

$$C_{h} = 15C_{h}^{*}C_{DN}(z/z_{0h})^{p_{h}} \times \left[\frac{\ln(z/z_{0})}{\ln(z/z_{0h})}\right] \quad (6)$$

$$C_{h}^{*} = 3.2165 + 4.3431 \times \mu + 0.5360 \times \mu^{2} - 0.0781 \times \mu^{3} \quad (7)$$

$$p_{h} = 0.5802 - 0.1571 \times \mu + 0.0327 \times \mu^{2} - 0.0026 \times \mu^{3} \quad (8)$$
where μ is $\ln(z_{0}/z_{0h})$ commonly referred to as kB^{-1} and in SURFEX has a fixed value of 2.3.

Perturbing surface energy fluxes - a first experiment

 kB^{-1} clearly important in detemening magnitude and direction of turbulent fluxes of heat and moisture via the exchange coefficient C_{H}

Comprehensively studied over range of artificail and natural surfaces, with considerable range of values obtained. Often used $kB^{-1} = 2.3$

Here experimented with random values of kB^{-1} in HarmonEPS = [-2.3, 4.6] (or Z0/ZH = [0.1, 100])

Test of concept where the same perturbation is applied everywhere (on nature tiles)

Perturbing surface energy fluxes - a first experiment 19 days in summer 2012, 10 members Southern Norway

By randomly varying there is a worsening of scores. Likely due to the same perturbation applied to all vegetation types

Future work will focus on determining appropriate perturbations for different vegetations.

HarmonEPS: Perturbation strategies

Initial condition perturbations:

- Perturbations from IFS ENS
- EDA with 3D-Var
- LETKF

Lateral boundary perturbations:

- Perturbations from IFS ENS
- Difference between deterministic runs / SLAF

Model error

- Multi-physics (Arome and Alaro)
- SPPT
- physics parameter perturbations: learn from experiences LAEF
- stochastic perturbations in several (microphysics, cloud) parametrizations
- Introduce "stochastic physics" on process level, rather than multiplying the total physical tendencies
- Use Cellular Automata (CA)

Surface perturbations:

- Experiment with perturbations of surface parameters (e.g. soil moisture, albedo, snow, SST, LAI, vegetation fraction, roughhness length and soil temperature)
- surface physics: study perturbations in momentum, heat and moisture flux parameterizations

Thank you