

The 36th EWGLAM & the 21st SRNWP Meeting

29 September -2 October 2014 Deutscher Wetterdienst, Offenbach, Germany

Overview of the HIRLAM-B the data assimilation activities

Jelena Bojarova on behalf of the HIRLAM Team

1. Structure functions

2. More high resolution observations

3. Overall tuning of the DA system

4. HARMONIE AROME 4DVAR

5. Consistent DA-EPS system

6. Unified variational data assimilation framework

Structure functions: sampling of uncertainty (1) 900 hPa 1 Aug 2011 00 UTC

Downscaling experiment to generate background error statistics

HARMONIE AROME 65 lev 2.5km METCOOP25B, 960x750 gridpoints

Downscaling of the ECMWF perturbations

Grid Separation (m)

300 hPa 1 Aug 2011 00 UTC

10000

100000

Grid Separation (m)

10000

1000

100

10

1

0.1

0.001

1000

Dm**2/s**2

300hPa

Structure functions: sampling of uncertainty (2) 900 hPa 16 Sep 2012 12 UTC iberia DA and SU

10000

Comparison between kinetic energy spectra for downscaling ("cold SF") and data assimilation ("warm SF") fields

HARMONIE AROME 65 lev 2.5km **IBERIA 2.5**, 576x480 gridpoints

Concentrate on observations in the lower troposphere

10000

10000

1000

100

10

0.1

0.001

1000

D m**2/s**2

300hPa

300 hPa 16 Sep 2012 12 UTC iberia DA and SU

100000

Grid Separation (m)

s**(2/3)

From Nils Gustafsson, SMHI

Structure functions: sampling of uncertainty (3)

HARMONIE ENDA system for generation of structure functions (Summer period Spanish domain) Model Level 29 Month 07 2012 12 UTC

10000 s**(2/3 ~Kinetic energy spectra ~600hPa aircraf EW +0h dow +3h dowl1000 Coincides well with FW +6h down FW +0h enda observations both EW +3h enda for ENDA and EW +6h enda 100 downscaling after ~6h D m**2/s**2 10 1 0.1 0.01 effective model resolution 0.001 1000 10000 100000 1e+06 Grid Separation (m)

Important to have turbulent motion and energy at initial time on appropriate scales. Spin-up properties depends **on the stability of boundary layer**.

From Nils Gustafsson & Magnus Lindskog, SMHI

Structure functions: sampling of uncertainty (4)

stat hor. f-plane balance between geop. and vort.

$$\phi_{mn}^{z} = \beta_{z}(m, n) \zeta_{mn}^{z},$$
$$\beta_{z}(m, n) = \frac{\operatorname{cov}(\phi_{mn}^{z}, \zeta_{mn}^{z})}{\operatorname{var}(\zeta_{mn}^{z})} = \frac{\overline{\phi_{mn}^{z} \zeta_{mn}^{z^{*}}}}{\zeta_{mn}^{z} \zeta_{mn}^{z^{*}}}.$$

Old Procedure

analytical hor. f-plane balance between geop and vort.

$$\begin{split} \Delta \phi(\mathbf{h}, z) &= f_0 \zeta(\mathbf{h}, z) \Leftrightarrow (\Delta \phi)_{mn}^z = f_0 \zeta_{mn}^z \\ \Leftrightarrow \phi_{mn}^z = \frac{f_0}{\Delta_{mn}} \zeta_{mn}^z, \\ \Delta_{mn} &= -\left(2\pi \frac{k^*}{N_s}\right)^2. \end{split}$$

New Procedure

From Magnus Lindskog, SMHI

Structure functions: sampling of uncertainty (5)

Error growth for the different size of initial perturbation

From Malte Müller, MET Norway

Need better insight into the error propagation mechanism: \rightarrow Perturbing observations, what properties do we see? \rightarrow How should we perturb in order to increase predictability?

Assimilation of radar data (1)

Root mean square error (RMSE)

Radiosonde wind at 925hPa (~750m) Summer experiment

Impact of the background error statistics (preliminary results)

New model statistics:

Perturbed observing network + varying physics parameterization + 12h model integration

From Malte Müller, MET Norway

The development of a robust technique to sample the model uncertainty on meso-scale is on-going

Assimilation of radar data (2)

Radar data exchange experiment (DKA domain)

~20 with radial wind in addition;

From Mats Dahlbom, DMI

learned on the local data

exchange!

Assimilation of radar data (3)

Impact of observation error characteristics and structure functions on radar data assimilation

Time-of-the-day str.func.

$$OE_w = \frac{2}{250}D + 1, \quad OE_r = \frac{0.25}{160}D + 0.15$$

4)
$$OE_w = \frac{2}{250}D + 2$$
, $OE_r = \frac{0.25}{160}D + 0.15$

5)
$$OE_w = \frac{2}{250}D + 1$$
, $OE_r = \frac{0.25}{160}D + 0.30$

6)
$$OE_w = \frac{2}{200}D + 1, OE_r = \frac{0.25}{160}D + 0.15$$

$$OE_w = \frac{2}{250}D + 1, \quad OE_r = \frac{0.25}{100}D + 0.15$$

Specific humidity an. increment 2014 05 17 ~850hPa

From Shiyu Zhuang, DMI

More high-resolution observations: scatterometer winds (1)

Time difference between the ASCAT measurement and the analysis time generates wrong ambiguity selections

Reduced thinning (a case of polar low):

RMSE and bias of mslp as timeseries

From Teresa Valkonen, MET Norway

More high resolution data : ZTD GNSS (1)

One month verification period

01/09 – 30/09 2012 (HYMEX) **AROME 2.5 IBERIA_2.5 65** level **CY38 3h RUC 3DVAR** Conventional + ZTD GNSS

CRL2 "REDNMC=0.6 no GNSS" VBC "First bad trial with GNSS" STA2 "static bias correction with GNSS" VBC2 "stiff VarBC with GNSS"

Persistent positive impact (finally!)

DO NOT OVERFIT!!!

Keep yourself away from the observations, if model is biased

From Jana Sanchez Arriola(AEMET), Sigurdur Thorsteinsson (IMO), Magnus Lindskog (SMHI)

(efficient use of **combined** high-resolution observations) obs. errors) St. Dev. of analysis departures of temperature for: Real obs - black •VarBC Simulated obs (error*0.2) - red; (error*1.0) - blue Observation error characteristics Impact studies 8 •Cyclic frequency 800 •Super-obbing/thinning versus effective model resolution Diagnostics •Obs. errors correlation 24 Temperature (K) **TEMP** temperature solution challenge infeasible for a single achievable for the one team

Coordinated use of combined efforts

From Roger Randriamampianina, MET Norway

Overall tuning of the DA system

OSSE setup (tuning of simulated

Scales for the deterministic analysis update

 \rightarrow Averaged HARMONIE fields compare well with observations;

 → HARMONIE AROME 2.5 small scales structures are probably realistic, but are they real?
 → Nature and NWP model <=> two realisations of a stochastic process; What are the meaningful scales for deterministic analysis update?

QuickSat footprint is about 50km²

From Gert-Jan Marseille & Wim de Rooy (KNMI)

HARMONIE AROME 4DVAR Prototype

(since 17 Jan 2014)

From Jan Barkmeyer (KNMI) & Magnus Lindskog (SMHI) et al

HARMONIE AROME 4DVAR Prototype (2)

Problem with the small scale noise still remains when interpolating increment to high-resolution

HARMONIE AROME 4DVAR Prototype (3)

Observation - Forecast

From Jan Barkmeyer & Siebren de Haan

HARMONIE AROME 4DVAR Prototype (4)

Cloud mask initialisation

Even more impressing results!

The Fog over sea problem is significantly reduced in HARMONIE AROME 4DVAR assimilation

Flow-dependent structure functions even with a very crude TL/AD model helps!

HarRUC

Har4DV

Proof of Pudding lies in the Eating!

Flow-dependent structure functions (1)

Single simulated observation experiments

58° N, 15° W; 500hPa 5 hours into assimilation window du =10m/s; dv = 5m/s

Flow-dependent inhomogeneous forecast error statistics are crucially important for conditioning of small scale structures by the large scale flow situation Flow situation (background state)

Position of simulated observation V500

From Nils Gustafsson (SMHI) & Jelena Bojarova (MET Norway)

Flow-dependent structure functions (3)

Unifying HARMONIE DA algorithmic developments

<u>Large scale error constraint:</u>

 $\rightarrow Jk$ as additional regularization term J = Jb + Jk + Jo (with preconditioning).

(Per Dahlgren, SMHI)

-<u>Clouds mask initialisation</u>: $T_v = T(1+0.61q_m - q_l - q_i - q_r - q_s - q_g)$

 →constant virtual temperature constraint for adjusted temperature/humidity profiles as a weak constraint via Lagrangian multiplier

(Sibbo van der Veen, KNMI)

→extended control vector space (initially as 2D field) + regularization constraint + displacement transform operator, displacement TL, displacement AD

(Carlos Geijo, AEMET, Tomas Landelius et al (SMHI))

→GQ-4DVAR, re-linearization of obs. operator

(Roel Stappers, MET Norway)

and flow dependent background error statistics (*"Nils&Jelena"*), etc., etc., long term work planned within OOPS (*Jk* more urgent)

Towards the unified variational data assimilation framework on meso-scales

(advantages of the OOPS design studio + inner/outer loop device => solution to a general non-linear minimization problem)

We plan to integrate the stand-alone developments into the unified variational data assimilation framework first in form of preprocessors and later on as the part of joint costfunction...

Keep going

Radar data 31.08 00UTC - 12UTC

HARMONIE AROME + 30h (MetCoOp)

<u>Good news</u>: The HARMONIE AROME is often capable to predict convective precipitation events;

Worse "news": The quality of the shortterm forecasts in the operational runs is not satisfactory : coupling strategy and data assimilation to be blamed

The best news: There is a lot of space for improvements !!!

Keep Going ...

everything will be okay in the end ...

if it's not okay,
it's not the end

Unknown

Thank You for your attention!