HIRLAM/HARMONIE land surface developments

Ekaterina Kourzeneva^{*}, Mariken Homleid, Trygve Aspelien, Tomas Landelius, Patrick Samuelsson, Laura Rontu, Yurii Batrak, Homa Keyrollahpour, Carl Fortelius, Margarita Shoulga, Clemens Wastl, Ulf Andrae

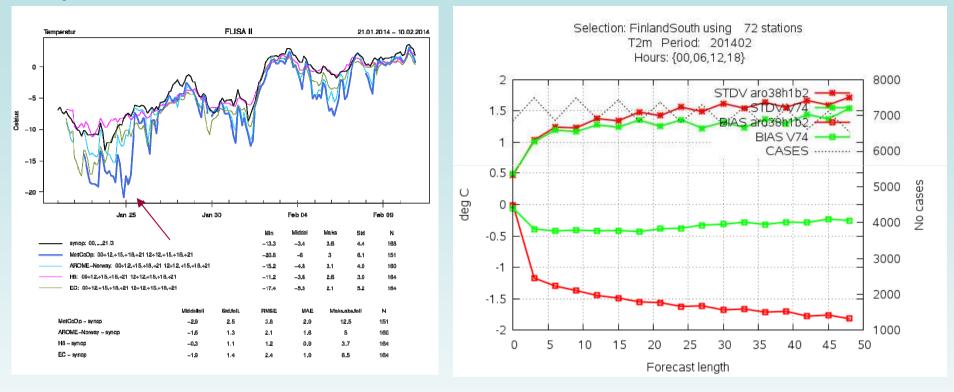
Contents

Operational status Ongoing and planned R&D Technical developments Soil and vegetation Snow Sea ice Lakes Urban Orographic radiation parameterization Physiography

Operational status: HARMONIE-38h1.1

DA:

in hor: OI for screen level temperature, relative humidity and snow depth, bilinear interpolation for SST


in ver: OI for soil temperature and soil moisture obs: SYNOP + precipitation stations for snow in Norway, planned in Finland and Sweden, OSTIA

physiography: ECOCLIMAP(II), FAO soil map, GTOPO

surface layer fluxes: CANOPY surface schemes: SURFEX7.2, 4 tiles - water and sea, urban, nature; ISBA 3L, D95 scheme for snow

Operational status: HARMONIE-38h1.1

Problem: cold T2m bias in winter time! Solved: cloudiness => microphysics => cloud ice/water thanks to Carl-Ivar Ivarsson, Eric Bazile EWGLAM/SRNWP Seminar 29 Sep.-02 Oct. 2014, Offenbach

R&D: Technical

SODA:

Testing, documentation, file formats, ISBA with patches, LAI obs planned and ongoing Code cleaning: for better optimization

R&D: Soil and vegetation, DA

•in ver: ... discussions about DA for ISBA-DIF

- in hor: EURO4M finished
- Prototype of En2DVar as OI replacement
- Improved OI with empirical non-isotropic and inhomogeneous structure functions: MESCAN
- Experiments with MESCAN and SURFEX

... to be continued

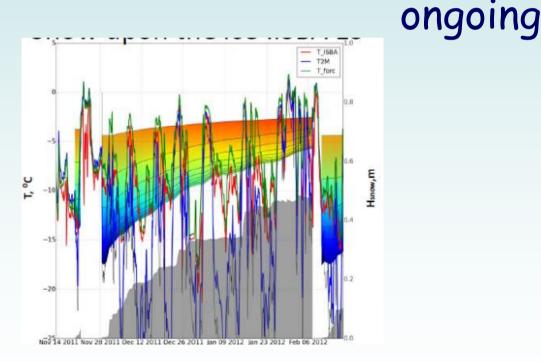
R&D: Snow modeling

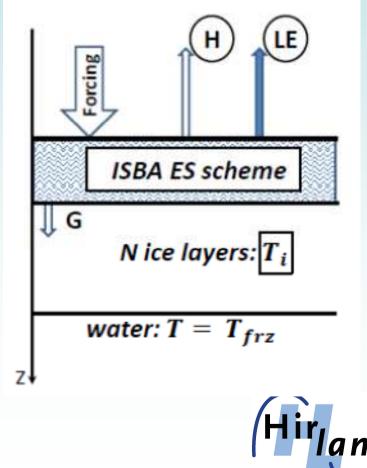
- MEB (coupled with ISBA-DIF, climate mode):
 extensive offline testing: over Europe comparing with ISBA-FR (difference in Southern Europe); validation against the Soviet snow dataset
- 1D experiments for Sodankylä: tuning of parameters, validation of SWE and fluxes
- first inline experiments in HARMONIE
 officially in SURFEXv.8, MEB+ISBA-FR

- planned CROCUS: used for avalanches and snow drift on roads in Iceland (SNAPS project) and in Norway http://www.snaps-project.eu/

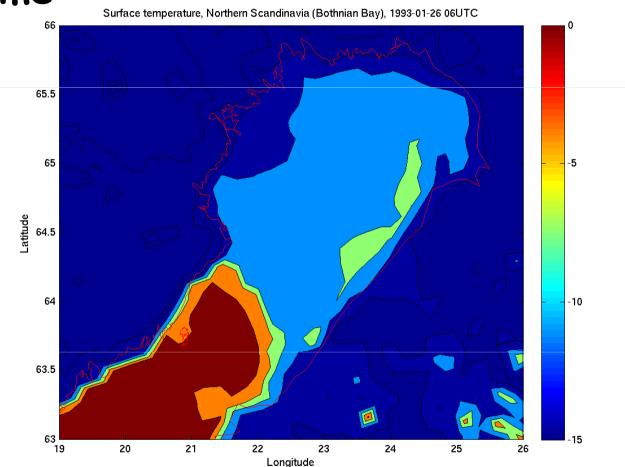
R&D: snow DA

in hor:

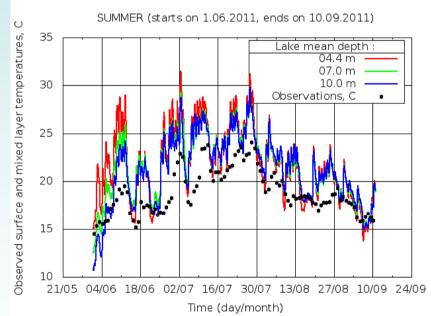

- experiments using probability of snow from satellite
- SE obs from NESDIS are too smooth for HARMONIE
- SE from Land-SAF, or Globsnow, or MODIS, SWE from microwave retrievals using HUT model - planned
- in ver: EKF for SWE planned, ideas how to assimilate SAR data


Snow obs and DA COST Action!

R&D: Sea ice modeling

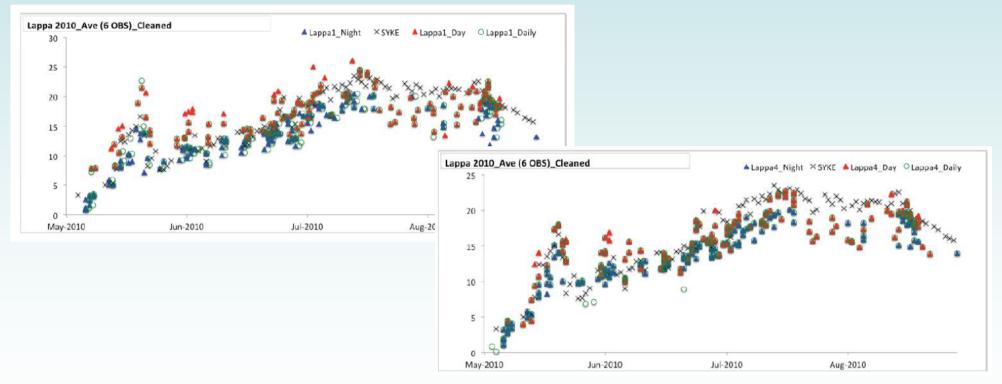

- Simple ice scheme (H=1m, heat diffusion 4L), snow on ice 4L, the ice fraction from analysis, offline and inline tests
- HIGHTSI planned and

R&D: Sea ice modeling


- Simple ice scheme in the climate version of HARMONIE

EWGLAM/SRNWP Seminar 29 Sep.-02 Oct. 2014, Offenbach Hirlam

R&D: Lake modeling


- to test FLake in 2D, SURFEX7.3, 7.2, HARMONIE 38-40 – planned and ongoing
- to include new versions of the lake database and lake climatology into SURFEX and HARMONIE - planned
 SUMMER (starts on 1.06.2011, ends on 10.09.2011
- 1D experiments for Lake Kyyvesi: to study the model error during different seasons

R&D: Lake DA

• In hor: new structure functions for OI (different from SST), quality control of satellite data - planned and ongoing

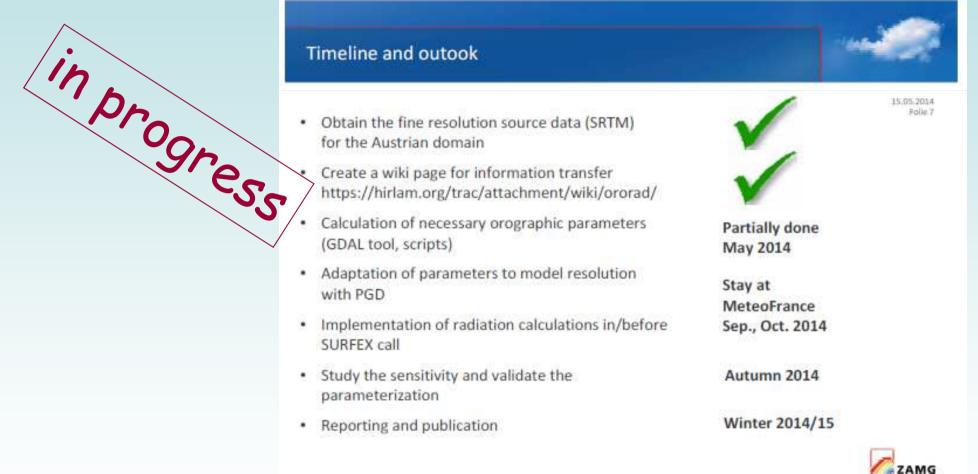
R&D: Lake DA

• In ver:

A posteriori statistics, statistics of errors, bug fixes

- Testing with deep water temperature obs, include into SURFEX and HARMONIE - planned

Name (longitude, latitude)	<i>D</i> (m)	I (%)	Name (longitude, latitude)	<i>D</i> (m)	I (%)
Kuivajārvi (23.9, 60.8)	2.2	94.8	Rehja-Nuasjārvi (28.0, 64.2)	8.5	95.5
Tuusulanjärvi (25.1, 60.4)	3.2	94.3	Vaskivesi (23.8, 62.1)	7.0	97.1
Pääjärvi 1 (24.5, 62.9)	3.8	96.6	Haukivesi (28.4, 62.1)	9.1	94.9
Pesiöjärvi (28.7, 64.9)	3.9	95.4	Kallavesi (27.7, 62.8)	9.7	96.3
Kyyvesi (27.1, 62.0)	4.4	96.5	Pielinen (29.6, 63.3)	10.1	94.6
Jääsjärvi (26.1, 61.6)	4.6	96.2	Konnevesi (26.6, 62.6)	10.6	95.4
Nilakka (26.5, 63.1)	4.9	96.6	Saimaa (28.1, 61.3)	10.8	94.5
Pyhäjärvi (22.3, 61.0)	5.5	96.4	Ala-Rieveli (26.2, 61.3)	11.2	92.4
Längelmävesi (24.4, 61.5)	6.8	94.4	Päijänne (25.5, 61.6)	14.1	93.7
Ounasjärvi (23.6, 68.4)	6.6	97.3	Inarijärvi (27.9, 69.1)	14.3	97.1
Lappajärvi (23.7, 63.1)	6.9	93.4	Nāsijārvi (23.8, 61.6)	14.7	94.0
Oulujārvi (27.0, 64.5)	7.0	95.0	Pääjärvi 2 (25.1, 61.1)	14.8	96.7
Unari (25.7, 67.1)	7.0	94.0	Kilpisjärvi (20.8, 69.0)	19.5	96.8
Kevojärvi (27.0, 69.8)	7.0	98.0			



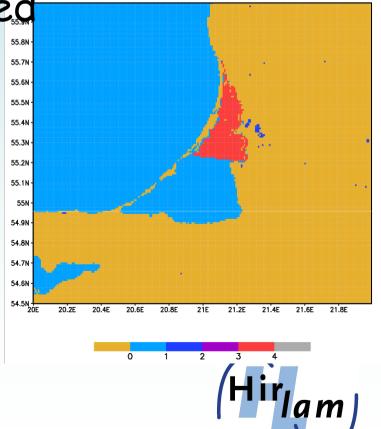
R&D: Urban modelling

Intercomparison study - TEB in SURFEX -SUEWS (U Helsinki) -CLM-U (KU Leuven) year 2012, SMEAR III tower at suburban area and Hotel Torni at Helsinki city centre

R&D: orographic radiation parametrization

R&D: Physiography

- Evaluation of GLDBv2 vs GLDBv1: independent data in Finland, the lake depth bias decreased from 5.36m to 2.64m
- Towards GLDBv3: indirect estimates in progression of the Sourthern in progress HARMONIE -Towards GLDBv3: indirect estimates of the
- To include into SURFEX, HARMONIE planned



R&D: Physiography

- Philosophy of fractions of tiles within Covers
 => inconsistency problems with other
 datasets, such as lake database.
 Solution: don't use this approach for lakes.
- Some Covers are poorly defined
 Solution:

to fix the binary cover map, done, should be coordinated with other developments

Curonian lagoon, Covers types contain from 2 to 50% of land

Thank you!

