

Recent Developments within LACE DA Activities

Mate Mile (*mile.m@met.hu*) with contribution from Benedikt Strajnar, Michal Nestiak, Xin Yan, Alena Trojakova, Patrik Benacek and others

Outline

- OPLACE
- Use of observations
 - IASI radiance observations and VARBC
 - RADAR reflectivity and radial wind
 - GNSS ZTD
 - Mode-S MRAR

OPLACE

- Common Observation Pre-processing system for LACE countries
- System handles 6 observation types in real-time providing proper data format for DA purposes
 - Obstype1 SYNOP OBSOUL(ASCII)
 - Obstype2 AMDAR OBSOUL(ASCII)
 - Obstype3 SATOB BUFR
 - Obstype5 TEMP OBSOUL(ASCII)
 - Obstype6 PROF BUFR
 - Obstype7 SATEM BUFR, GRIB
- Regularly maintained and monitored data

OPLACE

- A data assimilation study using clear-sky IASI radiance observations and initialization of variational bias correction have been investigated.
- Cloud detection scheme rejects cloudy channels (McNally, 2003)
 - Cloud contamination is determined on the basis of FG departures check and window gradient check in the scheme
 - Cloud detection scheme works correctly supposing unbiased satellite data

cloud detection algorithm as used for assimilation of AIRS, IASI and CrIS data by McNally and Watts (2003) Source: nwpsaf.eu

- In passive assimilation the low/middle tropospheric peaking channels have usually larger bias which leads to data rejection and takes long time to update VARBC coefficients for these channels.
- In order to avoid such data rejection in the system the following tuning of cloud detection scheme has been made:
 - Defining large extension of clear sky days in our domain (5-9 June 2013)
 - Estimate OMG departures for each IASI channel
 - Change BT threshold (according to the detected biases) to ensure clear radiances pass through quality control
 - IASI bias correction using fast adaptivity(NGB=500) for that particular clear sky days
 - BT thresholds were switched back to default values
- With this tunning of cloud detection scheme the low/middle peaking channels have not been rejected and regression coefficients were updated already at the beginning of VARBC calculation.

- To verify the functionality of the modified cloud detection scheme, the clear sky pixel selection from a random day was compared with cloud-type (CT) product of SAF/NWC.
- For middle peaking channel 246
 - Over clear sky conditions pixels are selected (red dots)
 - Data contaminated by high/mid level clouds are rejected (white/pink points)
 - Middle peaking channel was also selected over very low cloud (orange points)

- Therefore with the tuning of cloud detection scheme, it is easy to update the bias parameters of low/middle peaking channels early in passive assimilation.
- Fast adaptation of bias coefficients ensures reasonable bias parameters with a short tuning period.

Use of observations RADAR reflectivity and radial wind

LACE collected raw RADAR data samples from all LACE member countries.

- Goals:
 - Raw data in OPERA ODIM HDF5 format
 - Common Quality Control (INCA2 precipiation module)
 - Demonstrate benefit of data exchange and RADAR data assimilation
- Problems:
 - OPERA HDF5 format (and the content of it) is not uniform country by country
 - Conversion of Quality Indexes from QC to DA

Use of observations

RADAR reflectivity and radial wind

- INCA2 precipitation module has been tested for Common Quality Control
- INCA2 Quality indexes:

Q1 – Laplace filter; **Q2** – RLAN filter; **Q3** – Attenuation; **Q4** – NWCSAF Quality index (CT,CTTH); **Q5** – Beam Blockage; **Q6** – Radar climatology based Qi; **Q7** – All Qi-s

- INCA2 Quality Control is flexible to use all set or subset of these quality indexes
- Quality indexes have to be converted to ones used in data assimilation → CONRAD tool

Use of observations The RADAR reflectivity and radial wind

CONRAD

INCA2 QC quality indexes

- Q1 Laplace filter
- Q2 RLAN filter
- Q3 Attenuation
- Q4 NWCSAF Quality index (CT,CTTH)
- Q5 Beam Blockage
- Q6 Radar climatology based Qi
- Q7 All Qi-s

MF BUFR quality indexes for DA

0 : Noise	8 : rain (in fact precipitation!)
1 : static clutter	9 : large dropplets
2 : dynamic clutter (sigma)	10 : rain/hail
3 : close to clutter < 1 km	11 : fine hail
 4 : clear sky (insects, birds) 5 : military decoy, sea clutter 6 : sea clutter by vertical gradient and texture 7 : drizzle 	12 : hail 13 : dry snow 14 : wet snow 15: crystals

🖉 ZAMG

Use of observations ⁷ RADAR reflectivity and radial wind

- More efforts are needed to make
 - Further studies with INCA2 Quality Control
 - Comparison studies with other QC-s (e.g. BALTRAD)
 - Proper conversion of quality indexes for DA (develop CONRAD further)

- EUMETNET EGVAP network has fast growing network which provides already dense station coverage over Central-Europe.
- ZTD observations have been studied in AROME 3DVAR data assimilation system for winter and summer period of 2014. Network Status Status Sep 21 08:08:30 GHT 2014

⊃

AIREP

RADAR-

TEMP

TEMP

AIREP

- To evaluate the impact of ZTD observation on analysis DFS has been computed. (analysis at 12UTC, 3rd of January 2014)
- Absolute contribution of ZTD is moderate
- But relative importance is high
- GNSS ZTD is an important component of the DA system considering SYNOP, AMDAR, TEMP, RADAR and GNSS in AROME **3DVAR**

- Verification results from winter period 05/01 27/01 2014
 - AROME CONV: AROME 3DVAR with conventional observations
 - AROME PGPS: AROME 3DVAR with conv. and ZTD

- Verification results from winter period 05/01 27/01 2014
 - AROME CONV: AROME 3DVAR with conventional observations
 - AROME PGPS: AROME 3DVAR with conv. and ZTD

- Verification results from summer period 10/07 31/07 2014
 - **AROME CONV**: AROME 3DVAR with conventional observations
 - AROME PGPS: AROME 3DVAR with conv. and ZTD

- Verification results from summer period 10/07 31/07 2014
 - AROME CONV: AROME 3DVAR with conventional observations
 - AROME PGPS: AROME 3DVAR with conv. and ZTD

Use of observations Mode-S MRAR

- After extensive validations and tests, assimilation of Mode-S (MRAR sensor) has been operationally implemented in Slovenian ALARO 3DVAR.
- The impact of Mode-S MRAR is clearly positive on the nowcasting scales and winter period. During summer the impact is more complex and indicates sensitivity on humidity analysis.
- Clear added value of Mode-S was observed in extreme freezing rain case of Slovenia. (See also Slovenian poster)

Use of observations Mode-S MRAR

2013-07-24 12 UTC 2013-07-24 15 UTC a) b e

With Mode-S

Without Mode-S

Radar

Use of observations Mode-S MRAR

REF EXP Increment Increment without with Mode-S Mode-S b) Difference Difference between between analyses first guesses 600 hPa wind ZAMG

Thank You for your attention! **Questions?**

