

The Met Office Dynamical Core Present and Future perspectives

Mohamed Zerroukat

Met Office, UK

Outline

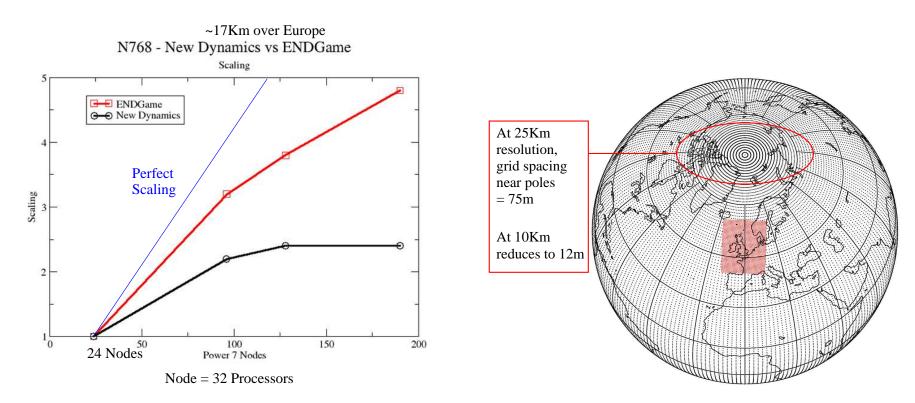
- ENDGame (Operational since July 2014 [Global])
- GungHo Project: Collaboration with:
 - Met Office
 - NERC: Bath, Exeter, Imperial, Leeds, Manchester, Reading, and Warwick Universities
 - STFC/Hartree Centre
- LFRic: A new UM infrastructure

Met Office Dynamical Core Past and Present

- ENDGame is an evolution from ND (Previous Model: 2002-2014)
- ENDGame shares many features with ND
- But ENDGame contains many new and improved features

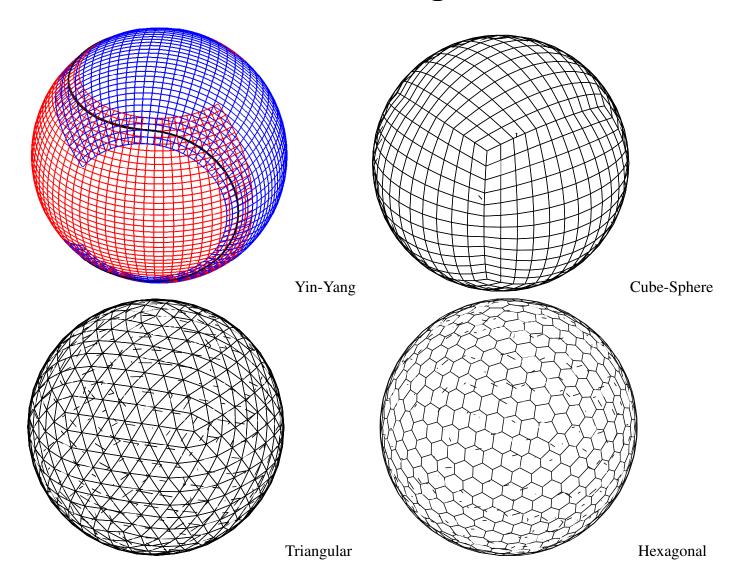
ENDGame-ND common features

- Same set of deep non-hydrostatic atmospheric equations
- Same Longitude-Latitude grid
- Same C-Charney-Phillips variables/grid staggering
- Semi-Implicit semi-Lagrangian scheme



ENDGame main new features

- A consistent semi-Lagrangian scheme for the advection of all fields
- Iterative scheme instead of predictor-corrector approach
 - Improved stability
 - Reduced off-centring (\sim centred scheme)
- v at poles instead of pressure
 - Improved conditioning of the Helmholtz problem
 - Fast convergence
- A simplified Helmholtz problem
- An efficient BiCGStab with Black & Red SOR Preconditioner
- A better conservation approach
- No polar filtering or horizontal diffusion



Long-Lat Grid: The End of the Road

Alternatives to Long-Lat Grid

GungHo Project: Objectives

- Highly Scalable model
 - Quasi-Uniform Grids (Hexagonal, triangles, cubed-sphere, Yin-Yang)
 - Minimum (or avoid global) communications
 - Key = Local Algorithms/Schemes
- Comparable performance and capabilities with the present model
 - Solve the same equation set
 - Maintain the Unified approach of Global/Limited Area/NWP/Climate configurations

Desirable properties for a dynamical core

- Mass conservation
- Accurate representation of balance and adjustment
- Accuracy at least approaching second order
- Absence of computational modes
- Consistent discretisation (maintain properties of continuous equations or converge to them in the limit of finer mesh-time)
 - Pressure gradient should not produce spurious vorticity
 - Energy conserving pressure and Coriolis terms
 - No spurious Rossby modes
 - Conservation of axial angular momentum

GungHo: The Road Map

- Mixed Finite Elements achieve most of the desired properties
- Finite Element framework allows various options to be pursued
- Actively pursuing 2 main approaches:
 - Quadrilateral elements: (equi-angular cubed sphere)
 - * Lowest order approach (similar to C-grid method)
 - * Higher order approach (to reduce grid imprinting)
 - Triangular elements:
 - * Requires higher order to avoid computational modes
 - * Has an unresolved dispersion problem
 - * More uniform and flexible grid
- Multi-grid solver (Implicit) and Explicit options
- Flux form advection schemes for transport

GungHo: On going work and future directions

- Developed shallow water models to investigate the different methods
- Developed a 3D discretisation
- Developing a prototype 3D model in the LFRic framework
- Use 3D model to test vertical dicretisation options
- Incorporate the Multi-grid solver into the prototype model
- Physics Coupling:
 - How to couple FE with physics
 - What dynamics/physics splitting scheme to use
 - Impact of forcings on grid imprinting (e.g. cubed sphere corners)

LFRic

- A new flexible UM computational infrastructure
- To take care of:
 - Configurations
 - Coupling model's components
 - Parallelism
- Allow easy implementation of scientific developments
- Allow easy plug-and-play

"No" Questions Please