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. All existing Var, EnKF, and EnVar analysis equations assume that
the effective background-error covariance matrix B is exact. But
this is never the case.

. EnVar takes a linear combination of static and ensemble covariances
to specify B. This is ad hoc.

. EnKF and EnVar use an ad-hoc localization. This is not theoretically
optimal.

. In the Var, EnKF, and EnVar analysis equations, there is no intrin-
sic feedback from observations to background-error statistics. This
requires external adaptation or manual tuning.

The new technique is supposed to mitigate these problems of the exist-
ing approaches.

In words: Acknowledge that B is uncertain and random and update it
along with the state.

Observations for B: both the ensemble and the ordinary observations
contain info on B.
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Level 2: extension by the new approach.
Level 1: the existing EnVar technique.

Ppost (%, B) = p(x, B|X®, x°P%) p(x[x”, B)p(X®|B)p(x°**|x)

where is the (new) prior pdf for B,
p(x|xP, B) is the traditional background-error distribution,

p(X€|B) is the (new) ensemble likelihood, and
p(x°Ps|x) is the traditional observational likelihood.

1) the mode of the joint posterior p,,s:(x, B) (deterministic analysis).
2) the mean of the marginal posterior p,ost(x) (deterministic analysis).
3) a sample from p,,s:(x) (ensemble analysis).
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—no need and no room for approximations.

So, the only term that needs explicit (and careful) specification is the prior

We decompose B = WW ' and assume that W is a Gaussian random
matrix with pdf

p(W) o e~ 2 H[(W=Wo)U™(W-Wo) U™

Sampling: W = W + ®Y® ', where Y is the pure-noise matrix, with
N (0,1) independent entries.
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[. Posterior mode: max p,,s:(x, B)

[I. Importance Sampling: Monte-Carlo estimation of the posterior mean:
).

1. Draw M samples W from the proposal density ¢(

2. Compute their non-normalized importance weights:

3. Perform m ordinary analyses x% with B,, = W . (W )T

4. Average x¢ with normalized importance weights w,;:

1-D importance sampling
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In the toy problem, the deterministic HB-EnVar analysis outperforms Var,
EnKF and EnVar.

Main aspects HB-EnVar

e Background-error covariance matrix B is treated as a sparse random
matrix and updated in the optimal scheme along with the state.

e The key issue is the prior distribution ot B.

e Ensemble members are treated as observations on the B matrix and
assimilated along with ordinary observations.

e The technique is computationally expensive.
Potential benefits of HB-EnVar

e Optimized hybridization of static and ensemble covariances.
Optimized combination of x/ and x¢.

Optimized covariance localization.

Optimized feedback from x°%* to the B matrix.

Uncertainty in B is explicitly accounted for in the generation of the
analysis ensemble, resulting in increased spread.



