

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Co-Designing a System for Regional Weather Prediction

Oliver Fuhrer¹, Xavier Lapillonne¹, Guilherme Peretti-Pezzi², Carlos Osuna³, Thomas Schulthess², (**Philippe Steiner**¹)

¹Federal Institute of Meteorology and Climatology MeteoSwiss ²Swiss National Supercompuing Centre CSCS, Lugano ³Centre for Climate Systems Modeling C2SM, ETH Zurich

Current operational system

ECMWF-Model

16 km gridspacing2 x per day 10 day forecast

COSMO-7

 $\Delta x = 6.6 \text{ km}, \Delta t = 60 \text{ s}$ 393 x 338 x 60 cells 3 x per day 72 h forecast

COSMO-2

 $\Delta x = 2.2$ km, $\Delta t = 20$ s 520 x 350 x 60 cells 7 x per day 33 h forecast 1 x per day 45 h forecast

Next-generation system

COSMO-1 since 30th September 2015 preoperational

Ensemble data assimilation: LETKF

Computational cost = 40 X

(relative to current operational system)

0

Production with COSMO @ CSCS

Cray XE6 (Albis/Lema)

MeteoSwiss operational system Since ~4 years

Next-generation system

Accounting for Moore's law (factor 4)

Co-design: A way out?

Potential

- Time-to-solution driven
- Exclusive usage
- Only one critical application
- Stable configuration (code and system)
- Current code is not optimal
- Novel hardware architectures

Challenges

- Community code
 - Large user base
 - Performance portability
 - Knowhow transfer
- Complex workflow
- High reliability
- Rapidly evolving technology (hardware and software)

Co-design: Approach

- Design software, workflow and hardware with the following principles
 - Portability to other users (and hardware)
 - Achieve time-to-solution
 - Optimize energy (and space) requirements
- Collaborative effort mainly between
 - MeteoSwiss, C2SM/ETH, CSCS for software since 2010
 - Cray and NVIDIA for new machine since 2013
 - Domain scientists and computer scientists
- Additional funding from the HPCN Strategy (HP2C, PASC)

The Swiss Initiative on High-Performance Computing and Networking (HPCN / HP2C)

- Passed by Swiss Parliament in 2009
- Investments in
 - new data center in Lugano
 - petascale computing systems
 - application development & know-how (Swiss universities, ETH Zurich/Lausanne)
- Specifically for COSMO
 - support researchers of ETH Zurich
 - software refactoring since fall 2010
 - collaboration MeteoSwiss/C2SM/CSCS
- Development of new MCH system
 - prototype with refactored code since 2013
 - co-designed new machine with NVIDIA & Cray
- New phase PASC (Platform for Advanced Scientific Computing) started 2013

OpenACC vs. STELLA

 Comparison using horizontal diffusion (also done for vertical advection – not shown)

	runtime	occupancy	DRAM read	throughput write	shared memory	register usage
non-block	ed (naive)					
K20X	0.53 ms	0.266	>75.1 GB/s	>35.5 GB/s	0 B	47-53
K20	0.68 ms	0.285	>39.1 GB/s	>26.3 GB/s	0 B	37-44
blocked						
K20X	0.90 ms	0.283	13.9 GB/s	62.9 GB/s	0 B	73
K20	0.69 ms	0.591	12.7 GB/s	63.1 GB/s	4 B	46
shared						
K20	0.54 ms	0.600	15.9 GB/s	16.1 GB/s	4.272 KB	39
shared-3D)					
K20	0.56 ms	0.670	15.4 GB/s	16.1 GB/s	4.272 KB	34
STELLA			Conclusio			
K20X	0.29 ms	0.90	Conclusio	115		
K20	0.35 ms	0.90	• STELLA implementation is 1.5 – 2.0 x faster			
			 OpenACC code is portable, but not fully performance portable, many manual optimizat 			

New MeteoSwiss HPC system

Piz Kesch (Cray CS Storm)

- Installed at CSCS in July 2015
- Public announcement 15th September
- Hybrid system with a mixture of CPUs and GPUs
- "Fat" compute nodes with 2 Intel Xeon E5 2690 (Haswell) and 8 Tesla K80 (each with 2 GK210)
- Only 12 out of 22 possible compute nodes
- Fully redundant (failover for research and development)

It is now possible to compare our choice against a more "traditional" choice (e.g. Cray XC40 with Haswell CPUs)

New MeteoSwiss HPC system

Piz Dora (Cray XC40)

- "Traditional" CPU based system
- Compute nodes with 2 Intel Xeon E5-2690 v3 (Haswell)
- Pure compute rack
- Rack has 192 compute nodes
- Very high density (supercomputing line)

Energy Measurement

- We use power clamp for comparison
- Measurements from PMDB and RUR were within 1% of clamp

Piz Dora (Cray XC40)

Power clamp

(external measurement which measures wall consumption including AC/DC conversion, interconnect, but excluding blower)

- 1-2 nodes were down and could not be used (considered in computation)
- **PMDB** (1 Hz, per node)
- RUR (total per job)

Piz Kesch (Cray CS Storm)

Power clamp

(external measurement which measures wall consumption including AC/DC conversion, interconnect, but excluding blower)

 Other components (mgmt nodes, extra service nodes, drives) powered down

Benchmark

COSMO-E

2.2 km gridspacing582 x 390 x 60 gridpoints120 h forecast

Details

- Planned operational setup by MeteoSwiss
- Required time-to-solution = 2h (333 ms per timestep)
- Fill a full rack with members (keeping sockets per member constant)
- COSMO v5.0 (with additions for GPU porting and C++ dynamical core)
- Single precision (both CPU and GPU not fully optimized)

Results			Note Not sure if this is an apples- to-apples comparison, due to different "character" of systems		
		Piz Dora	Piz Kesch	Factor	
Sockets @ required time- to-solution for 21 members		~16 CPUs	~7 GPUs	2.4 x	
Energy per member		6.19 kWh	2.06 kWh	3.0 x	
Time with member	8 sockets per	13550 s	5980 s	2.3 x	
Cabinets ensemble to-solutio	required to run e at required time- n	0.87	0.39	2.2 x	

Results Relative to "Old" Code

("Old" = no C++ dycore, double precision)

	Piz Dora ("Old SW")	Piz Kesch ("New SW")	Factor
Sockets @ required time- to-solution for 21 members	~26 CPUs	~7 GPUs	3.7 x
Energy per member	10.0 kWh	2.06 kWh	4.8 x
Time with 8 sockets per member	23075 s	5980 s	3.8 x
Cabinets required to run ensemble at required time- to-solution	1.4	0.39	3.6 x

"Management summary"

Key ingredients

0

- Processor performance (Moore's law)
- Port to accelerators (GPUs)
- Code improvement
- Increase utilization of system
- Increase in number of sockets
- Target system architecture to application

The Right Performance Metric?

	Piz Dora ¹	Piz Kesch ²
HPL (TFLOP/s for one full cabinet)	~150	~260
HPCG (TFLOP/s for one full cabinet)	~3.0	~8.1
COSMO (10 ⁹ gridpoint updates per s at scale and time-to-solution)	0.98	2.2

¹results scaled from benchmark on more cabinets ²results scaled from 12 to 22 compute nodes per rack

- New forecasting system doubling resolution of deterministic forecast and introducing a convection permitting ensemble
- First element **COSMO-1** preoperational since 30th September
- Operations of the whole system planed for spring 2016
- Co-design (simultaneous code, hardware & workflow re-design) allowed MeteoSwiss to increase operational computational load by 40x within 4–5 years
- New **CS Storm system with fat GPU** nodes since July 2015
- Energy to solution is a factor 3x smaller as compared to a "traditional" CPU-based system
- New code to be integrated in **COSMO official version** in 2016

Thank you for your attention! Questions?

