
Current activities in COSMO physics
(according to COSMO Science-Plan)

o Cloud microphysics:                    (in the course of common microphys. for COSMO/ICON)   

• Revised explicit sedimentation scheme• Revised explicit sedimentation scheme

• Improved determination of cloud-number concentration including aerosol activation 

o Radiation: revised (so far one-way) cloud-radiation coupling

• Inclusion of falling hydrometeors in description of ice-cloud optical properties

• Determination and evaluation of sensitive parameters

o Turbulence( / SGS Circulation): (in the course of common turbulence for COSMO/ICON )

• Extending (so far one-way) scale interaction between turbulent and non-turbulent 
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fog
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• Extending (so far one-way) scale interaction between turbulent and non-turbulent 

SGS flow structures (Separated Turbulence Interacting with Circulations: STIC)

• Implementing (so far ad-hoc) empirical parameterization-extensions

• Introducing moist turbulence to Surface-Atmosphere Transfer (SAT) 

• Investigation of possible “stability damping” in the current SAT-scheme
fog



� Explicit first order flux-form advection scheme for sedimentation of 
hydrometeors

New explicit sedimentation-scheme
(for the 2-moment microphysics)

Ulrich Blahak (DWD)

hydrometeors

� In principle independent on Courant-number (in practice up to CFL ≈ 4)

o Problem: unrealistic very high temporal peaks in the precipitation rate

− vanishing for smaller time steps or by use of an implicit scheme

(both currently too expensive, at least for the 2-moment scheme!)

� Analysis of the problem and reformulation of the scheme
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� Weisman-Klemp supercell simulation (2-mom)

Comparison: idealized 3D supercell
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Cloud Number Concentration NCCN based on Tegen-climatology
Ulrich Blahak (DWD)

� Currently: constant NCCN (in Kg-1) for operational running 1-moment microphysics

� Tegen-climatology: (Tegen et al., 1997),  unless COSMO-ART is running

o Optical thickness for 5 aerosol categories:

• sea-salt, mineral dust, black carbon, organics

o Assumed spec. extinction coefficients

o Assumed mean particle radius and density 

o Assumed exponential decrease within PBL
=> aerosol number concentration 

NCN in m-3

=> grid-column-integrated 
aerosol-mass per m-2

� Segal/Khain (2006) cloud-activation parameterization:

o aerosol number concentration NCNo aerosol number concentration NCN

o cloud-base updraft speed radiationt
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� Going to be used for new calculation of optical cloud properties (cloud effective radii)

� Should consistently be used for nucleation of cloud-water and  -ice as well

� More realistic simulation of warm-rain process (so far corrected by unrealistic large 
constant NCCN)
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Control Experiment

Effect on pure orographic warm rain 
by idealized flow over a mountain
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� In the COSMO radiation scheme (Ritter & Geleyn 1992)

− Optical properties of ice-clouds are described crudely and don’t include precipitation products

extinction coeff .         , single scattering albedo , 

asymmetry factor g ,  delta-transmission factor f d

− Effect of inhomogeneity is taken into account by means of a constant reduction factor radqcfact =0.5

e
x
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Revised parameterization of optical ice-cloud properties:

Ulrich Blahak (DWD), Harel Muskatel (IMS), Pavel Khain  (IMS)

− Effect of inhomogeneity is taken into account by means of a constant reduction factor radqcfact =0.5
applied to the mass fractions.

� New parameterizations of optical properties based on idealized calculations according to Fu

− Visible-bands : Ray-tracing for randomly orientated hexagonal ice particles (Fu 2007)

− IR-bands : weighted average of Mie-scattering and related methods (Fu et al. 1998)

− Optical properties are treated as functions of effective arguments

o effective size          

o aspect ratio AR
geD and wave-length

− Arguments deduced from inherent assumptions in terms of particle size distribution N(L), mass size 
relation m(L) and particle shapes (expressed by L and D):

o Suitable also for complicated ice particles (bullet rosettes, aggregates with rough surfaces, 
fractional crystals)

o Extending particle size range (5 µm - 300 µm) by using 7000 size-modified Generalized Gamma-
Distributions N(L)

− Fitting the calculated relations between optical properties and effective arguments

o In terms of rational functions using spectral averaging for 8 distinctive spectral bands
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� Perform idealized COSMO simulations 

− for many parameter combinations

− and special cloud types 

Problem :  New radiation scheme depends on 30 parameters

� Replace attenuation of radiation (in %) by an analytic function 
(quadratic form) of the parameters ( meta-model ): 

( )L,p,pR 21
scaled dimensionless parameters 

ranging from -1 to 1

� Calculate sensitivity of each parameter       :ip R
ip∂

� Treat most sensitive parameters as tuning-parameters to be evaluated by CALMO

� Evaluate the less sensitive parameters by “ expert-tuning ”
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• SSO wakes, 

• SSO density currents

• plumes of SGS convection

additional SGS shear by :

STIC-impact:

The STIC-scheme including empirical parameterization extensions:
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with using           as an 

lower interpolation node 

The SAT-scheme with an explicit surface-level TKE-equation including moist physics:
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Roughness-layer resistance for scalars:

with a laminar scaling 

parameter dependent on 

over see surfaces0θ∂z

profiles expressed in

conserved variables: 

by use of resistances
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Testing potential stability damping:

− 1-st hypothesis: Reducing the numerical security limits in the turbulence model and the specific 

� Application of component testing using COSMO-SC with the common turbulence-code and 

tower measurements:

Ines Cerenzia (ARPA-SIM), Matthias Raschendorfer (DWD) 

− 2-nd hypothesis:  Avoiding the upper interpolation node    for the profile function can 

reduce the damping

− Comparison with a modification by substituting the dimensionless P-Layer-resistance 

by the MO-stability function
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− 1-st hypothesis: Reducing the numerical security limits in the turbulence model and the specific 

SAT-code (based on the common code) can reduce the damping

� Only marginal effect (except minimal diffusion coefficients)
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� Considerably larger sensitivity of transfer-coefficients at stable stratification

− Lower magnitude of surface fluxes

− Stronger decrease of nocturnal T2m



Overestimation of 
surface fluxes

Frequency of

Stability damping 
seems to be active 
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Transfer-coefficients: 

� simulated by a SC-run with model levels at 2m and 10m height

� forced by measured T_2m, Td_2m, V_10m and T_s 

� and derived directly from measurements

without using the
upper node for the 
profile function

� A first  test-case based verification over Italy was rather indifferent, even though pointing in the 

right direction

profile function



� Turbulence-Interaction with Micro-Phys. beyond pure saturation adjustment:

− Consideration of turbulent statistics in MP

Axel Seifert 

− Deriving missing correlations between model variables and MP-source-

Promising general activity:

(still basic research, not yet implemented, not really started)

− Deriving missing correlations between model variables and MP-source-
terms in 2-nd order budgets for turbulence

Dimitrii Mironov, Axel Seifert

� Increasing the range of scales included to turbulence closure:

− coherent structures with skewed distributions, TKESV

Dimitrii Mironov, Ekatarina Maschulskaya

� Dealing with statistical parameterizations� Dealing with statistical parameterizations

− substituting intended model-parameters to reduce systematic model errors

staff from ICON or special projects at DWD (renewable energy)

� Developing stochastical parameterizations

− simulating the not closed remaining stochastic discretization error
Ekatarina Maschulskaya



Questions?



Fitting asymmetry-factors    for smooth and  rough surfaces :
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1. Example:


