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Part 1 From 4DVar to 4DEnVar at EC with a focus on the 
regional deterministic prediction system.

Part 2 Scale-dependent covariance localization in EnVar.
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EC's NWP systems before 11/2014
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EC's NWP systems since 11/2014
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• 4DEnVar uses a variational assimilation approach in 
combination with the already available 4D ensemble 
covariances from the EnKF

• By making use of the 4D ensembles, 4DEnVar performs a 4D 
analysis without the need of the tangent-linear and adjoint of 
forecast model

• Consequently, it is more computationally efficient and easier 
to maintain/adapt than 4DVar

• Future improvements to EnKF will benefit both ensemble and 
deterministic prediction systems

• Increased incentive to improve EnKF and improve how 
ensemble members used within 4DEnVar

4DEnVar
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• In EnVar… the background-error covariances and analysed state 
are explicitly 4-dimensional, resulting in cost function:

• In 4D-Var… the 3D analysis increment is evolved in time using 
the TL/AD forecast model (here included in H4D):
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Hybrid B formulation

(ek is kth ensemble perturbation divided by sqrt(Nens-1))

EnVar is ~10x 
computationally cheaper 

than 4DVar

4DEnVar Formulation
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The operational RDPS in a nutshell

• Main NWP guidance at day 1 and 2 for 
MSC's forecasters

• Limited-area model
• 10-km, 80 levels

• Forecasts up t+48h
(data available on http://dd.weather.gc.ca/)

• 4 runs per day (00,06,12,18 UTC)

• LBCs from a simplified GDPS

• Intermittent cycling
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3D-Var 100-km

4D-Var 100-km

Replacing 4D/3D-Var by 4D-EnVar
proof of feasibility

• EnVar based on global EnKF as in the GDPS

4DVar 100-km

EnVar 66-km

EnVar 66-km

� EnVar setup identical to 
the GDPS

� B is a mix ( 50 / 50 ) of 
static parameterized 
covariances and 4D 
global ensemble 
perturbations

� Analysis grid follow the 
resolution of the EnKF;
here 66-km

� 192-member EnKF
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The new EnVar-based RDPS 
operational since November 2014

EnVar 50-km

EnVar 50-km

EnVar 50-km

� Upgrade to the 
observational data 
assimilated

� New radiances bias 
correction

� Bias correction for 
aircraft T data

� Radiosondes drift 
taken into account

� Assimilation of 
ground-based GPS 
ZTD

� Increased volume of 
data for AIRS and 
IASI

Additional changes
� EnVar-based GDPS 

analysis at T-6h

� 50-km and 256 
members EnKF
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Timings and computational cost

Analysis
DA 

Scheme
CPUs

Wall clock
(min)

Cost 
(CPU min)

LAM
4D-Var * 2048 17 34816 *

EnVar 320 7 2240

Driver
3D-Var 64 9 576

EnVar 320 9 2880

���� x15 !!!

� x5 
but with 
the same 
wall clock 
time

* Not including the cost of the nonlinear forecast from T-3h to T

On EC's IBM P7…
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Summary

• We first showed that the global-based EnVar approach developed for 
the GDPS can provide RDPS forecasts with either similar or sligh tly 
improved accuracy compared to the operational configuration based on 
a limited-area 4D-Var for the LAM and a global 3D-Var for the driver

• To find out more see Buehner et al. and Caron et al. in the July 2015 
issue of Monthly Weather Review.

• A new operational RDPS configuration based on the EnVar approach 
was implemented in November 2014

– The EnVar scheme is based on the ensemble of backgrounds from the upgraded global 
EnKF system (50-km, 256 members; as in the GDPS)

– Several improvements to the processing and the volume of data assimilated were 
introduced (as in the GDPS)

– The RDPS intermittent cycling strategy is now initialized with the improved EnVar-based 
GDPS analysis

– The LAM analysis computational cost is reduced by an order of magnitude
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EC's NWP systems since 11/2014
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! REPEAT OF A PREVIOUS SLIDE !
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EC's NWP systems in ~2020
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Part 2
Scale-Dependent Covariance 

Localization in EnVar
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Scale-dependent covariance localization
Motivation

• Spatial covariance localization essential to obtain useful analyses 
with “small” ensembles (a 256-member ensemble is still "small"!).

• Currently, EnVar uses simple localization of ensemble covariances, 
similar to EnKF: single length scale in both horizontal and vertical 
localizations based on Gaspari and Cohn (1999) 5th order piecewise 
rational function.

• Comparing various NWP studies, seems that the best amount of 
horizontal localization depends on application/resolution:

o convective-scale assimilation: ~10km 
o mesoscale assimilation:          ~100km
o global-scale assimilation:        ~1000km – 3000km

• Proposed approach: Simultaneously apply appropriate (i.e. different) 
localization to different range of scales: Scale-dependent localization.
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Horizontal Scale Decomposition

Large 
scale
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scale

Small 
scale

2000 km10000 km 500 km

Filter response functions for decomposing with 
respect to 3 horizontal scale ranges
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Horizontal Scale Decomposition

Full Large scale

Small scale Medium scale

Perturbations for ensemble member #001 – Temperature at ~700hPa
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Scale-dependent covariance localization
Implementation in EnVar

• Analysis increment computed from control vector 
(B1/2 preconditioning) using:

( )∑∑=∆
k j

kjjk ξLex 2/1
, o

( )∑=∆
k

kk ξLex 2/1
o

• Varying amounts of smoothing applied to same set of  
amplitudes for a given member

Current (standard) Approach

Scale-dependent Approach (Buehner and Shlyaeva, 2015, submitted to Tellus)

where ek,j is scale j of normalized 
member k perturbation

k: member index
j: scale index

k: member index
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Normalized temperature 
increments (correlation-
like) at 700 hPa resulting 
from various B matrices.

Scale-dependent covariance localization
Impact in single observation DA experiments
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Bens No hLoc

Normalized temperature 
increments (correlation-
like) at 700 hPa resulting 
from various B matrices.

Scale-dependent covariance localization
Impact in single observation DA experiments
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Scale-dependent covariance localization
Forecast impact

• 1.5-month trialling (June-July 2014) in our global NWP system.
– Why using the global system and not the regional system? Because the 

positive impact from the scale-dependent localization is likely to be greater in 
this system since…

▪ An intermittent cycling strategy is used in the regional system

▪ The global system has a wider range of horizontal scales

1) Control experiment with hLoc = 2800 km, vLoc = 2 units of ln(p)

2) Scale-Dependent experiment with a 3 horizontal-scale 
decomposition

I. Small scale uses hLoc = 1500 km
II. Medium scale uses hLoc = 2400 km
III. Large scale with uses = 3300 km

• 3DEnVar with 100% Bens used in both experiments

Ad hoc values

Same vLoc (2 units of ln(p)) for every horizontal-scale
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Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim
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Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim
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Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim

T+24h
Zonal mean

� Control is better
� Scale-Dependent is 

better

Std Dev difference for U
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Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim
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World
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Std Dev for U at 250 hPa
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Summary and Future Work

• Scale-dependent localization is feasible and straightforward to implement 
in EnVar, but more expensive than using single-scale localization.

• Preliminary results using a horizontal-scale-dependent horizontal
localization indicate small forecast improvements in our global NWP 
system.

• Up next…

– Optimize the horizontal localization length scales used for 
each horizontal-scale band. An objective evaluation approach 
is needed.

– Examine the impact of horizontal-scale-dependent vertical
localization

– Examine the impact of vertical-scale-dependent vertical
localization.
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Questions?
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• Preconditioned cost function formulation at EC:

• In EnVar with hybrid covariances, the control vector (ξ) is 
composed of 2 vectors:

• The analysis increment is computed as (ek is k’th ensemble 
perturbation divided by sqrt(Nens-1) ):
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EnVar Formulation - Preconditioning


