Dynamics developments in HIRLAM

M. Hortal P.L. on dynamics in HIRLAM-B

Overview

- Vertical finite elements fulfilling the C1 constraint
- Upper nesting boundary conditions
- Quadratic and cubic grids
- Weak constraint boundary conditions
- "Slow start" of the forecast
- Future plans
 - Higher horizontal and vertical resolutions
 - Transversal issues with physics, chemistry and climate

Vertical finite elements

- The purpose of the present work is to provide a new vertical finite element technique making use of analytical properties of B-splines
- This allows to solve the following limitations
 - C1 Constraint
 - Invertibility of the integral and derivative operators

Vertical SI derivative and integral operators

 We develop matrices RVFEG, RVFES, RVFEN to be used inside sigam.F90, sitnu.F90 and their associated subroutines in non linear model

Derivatives and integrals of B-splines:

$$\frac{\partial}{\partial \eta} N_{i,k} = (k-1) \left[\frac{N_{i,k-1}}{\Delta_{i,k-1}} - \frac{N_{i+1,k-1}}{\Delta_{i+1,k-1}} \right]$$

$$\int_{0}^{\mathsf{n}} N_{i,k} d\eta = \frac{\Delta_{i,k}}{k} \sum_{s \geq i} N_{s,k+1} \qquad (\Delta_{i,k} = \eta_{i+k} - \eta_i)$$

i: node number; k: order of spline

Use of the projection operators

C1 constraint

It is the constraint which allows to arrive at a single Helmholtz equation in the non-hydrostatic Aladin model

$$G^{*}S^{*}-G^{*}-S^{*}+N^{*}=0 => (G^{*}-1)(S^{*}-1)=(1-N^{*})$$

C1 constraint (cont)

C1 constraint (cont)

Functions H_k and K_k are related with the B-spines

$$H_{k} \equiv (\partial * - 1) N_{i,k}$$
$$K_{k} \equiv \partial * N_{i,k}$$

Testing the new operators

- The period from 2014-11-26 to 2014-12-03, very active period on the Iberian domain, was used to compare with the standard HARMONIE setup.
- CY40h1.1.beta.2
- 91 levels
- 2.5 km resolution using 60 s time step

deg C

Upper nesting boundary conditions

- Davies relaxation similar to the lateral boundaries was introduced in the upper boundary of the model.
- Some runs of the HARMONIE model at 2.5 km and higher resolutions exploded due to too strong wind or unrealistic temperatures at the upper levels.
- Use of the ICI (iterative centred implicit) otherwise called the predictor-corrector PC scheme avoided the explosion but introduced noise, particularly at low levels
- Introduction of the upper boundary conditions stabilized the runs without introducing supplementary noise

DIVERGENCE

SPECTRAL NORMS - 1km Resolution Δt =30

Definition of quadratic and cubic grid

- For a given spectral resolution M in Fourier space
 - Linear grid is the one which allows exact transforms, in contains at least 2M+1 points
 - Quadratic grid is the one which eliminates quadratic aliasing and has at least 3M+1 points
 - Cubic grid eliminates cubic aliasing and should have at least 4M+1 points

Elliptic truncation in quadratic and cubic grids for a given distribution of grid points in physical space

Kinetic energy spectra and effective resolution

6 stations Selection: ALL Height Period: 20141126-20141203 Statistics at 00 UTC Used {00,12} + 12 24 36

Weak constraint boundary conditions

The SBP/SAT method (summation by parts and simultaneous approximation term) is designed to

- mimic the continuous integration-by-parts by discrete summation-byparts (this makes it also conservative)
- be high-order accurate (choice of 2,4,6,8 and 10) in the interior and lowering of the order close to the boundaries (1,2,3,4 and 5).
- stable by the use SAT (weak boundary conditions)

Well-posedness (continuous) ,<=> Stability (discrete)

From Marco Kupiainen

Use of energy method for stability

The problem

$$u_t + u_x = 0$$

Is well-posed depending on the boundary conditions.

This can be shown using integration by parts within the energy method

Discrete scheme

$$u_x = P^{-1}Qu + O(h^p)$$

With P symmetric positive definite and $Q+Q^{T} = \text{diag}(-1,0,\ldots,0,1)$ (almost skew-symmetric)

The semi-discrete scheme is:

$$u_t = -P^{-1}Qu - \gamma P^{-1}E_0(u - g(0, t))$$

Where $E_0 = diag(1, 0, ..., 0)$

Using the energy method and summation by parts we can see that we need $\gamma \ge 1/2!$

Slow start of the forecast

- In some cases the forecast model "explodes" at the second time step
- There are two main causes for this:
 - Time extrapolation of the non-linear terms
 - Large values of the 3D divergence computed from the nesting hydrostatic model which produce unrealistic temperature tendencies
- A "slow start" of the model has been introduced during the NFOST first time steps
 - A first order treatment (avoiding time extrapolation) is applied to the non-linear terms
 - A limiter is applied to the value of the 3D divergence

Thanks!

Questions?

Future work

- Continue the development of vertical finite elements
 and weak constraint boundary conditions
- Go towards higher horizontal and vertical resolutions
- Collaborate with the physical parameterization, chemistry and climate people in dynamics issues arising
- Keep an eye and adapt as needed developments, mainly at ECMWF, related with exascale computing