

Development and Research on Climate Change

Goran Pejanović SEEVCCC team

37th EWGLAM and 22nd SRNWP Meeting Belgrade, Republic of Serbia, October 05-08, 2015

Good practices in the development and application of climate services

- SEEVCCCs participation in WMO RA VI-EUROPE RCC Network
- Mandatory operational functions:
- Climate Data Node
- Lead: KNMI/Netherlands (consortium member SEEVCCC/RHMS-Serbia)
- South East European gridded model datasets for 1961-1990, 2001-2030, 2071-2100 first version RCM-SEEVCCC (ready) 1971-2000, 2071-2100 new RCM-SEEVCCC (in progress, NMMB)
- Climate Monitoring Node
- Lead: DWD/Germany (participate SEEVCCC/RHMS-Serbia)
- Collecting data from stations (monthly, 400-500 stations)
- Main source for data KNMI-ECA&D, other climate bulletins NCDC)
- Mean temperature and accumulated precipitation
- Temperature anomaly and precipitation percent of normal
- All available monthly/three-monthly
- Long Range Forecast Node
- Lead: Météo-France & ROSHYDROMET (participate SEEVCCC/RHMS-Serbia)
- Once a month ensemble run of a regional long range forecast 7 months ahead: dynamical downscaling ECMWF 51 ensemble with RCM-SEEVCCC

Climate monitoring node – monthly/daily data

Monthly data available through ECA&D data base by the middle of the month - late

Long Range Forecast / Seasonal forecast

Probabilistic forecast

provides statistical summary of the atmosphere and ocean state in forthcoming season.

RCM - SEE VCCC

normal (1961-1990)

Monthly mean temperature

Forecast start at: 01-03-2010

- RCM-SEEVCCC LRF
 regional dynamical downscaling using fully coupled
 atmosphere-ocean Regional Climate Model
 - model start: 08th of each month; operational since June 2009.
 - forecast duration: 7 months
 - model resolution: ~35km atmosphere ; ~20km ocean
 - model domain: Euro Mediterranean region extended towards Caspian Sea
 - 51 ensemble members
 - initial & boundary conditions: ECMWF, ~75km
 - winter hindcast (1981-2010) December run, 7 months
 - operational forecast available in GRIB via WIS-DCPC-Belgrade
 - Member of Med-CORDEX Initiative

Climate Watch Advisory for SEE

CWS issued by SEEVCCC

Within the first week (April 14th to 20th, 2014), ECMWF monthly forecast predicts above normal mean weekly air temperature, with anomaly up to +2°C over Balkars, south Caucasus and some parts of Turkey. Probability for exceeding upper tercile is around 70%, while in central Turkey and south Caucasus it is less confident. Precipitation deficit is expected in most part of the SEE region, with the highest probability, of around 80% for exceeding 1 tercile over eastern Mediterranean. Climate Watch (Serial No.: 20141117 -00)

During the second week (April 21^{**} to 28th, 2014), above normal mean weekly temper with anomaly up to +3^{*}C is forecast for eastern part of SEE region. Probability for exceupper tercile is around 80%. Precipitation deficit is expected in central parts of Turkey, v probability for exceeding lower tercile is around 60%.

In the period from April 14th to May 11th 2014, above normal mean monthly temperature

Outlook

Figure 5. Mean seasonal temperature and precipitation anomaly for the season MJJ (seasonal outlook for RCM - SEEVCCC)

			Initial/Updated/Final
er			
,v Ire	Topic: precipitation Organization issuing the statement:	SEEVCCC	
ni ra	<u>Issued</u> ' Amended / Cancelled	17-11-2014 12:00 P.M	
os ia R	Contact:	E-mail: <u>ows-seeveed2 hidmet.s</u> Phone: +3\$1112066925 Fax: +3\$1112066929	<u>21 VQ</u>
-	Valid from – to:	17-11 - 30-11-2014	Next amendment: 24-11-2014

Region of concern: South-Eastern Europe

"During the next week, precipitation surplus is expected along the Adriatic Sea coast, — nania, Moldova and south Caucasus. Probability for exceeding upper terrile is _ und 80%."

nitoring

he period from November 9^{th} to 15^{th} , 2014 above normal air temperature¹, with anomaly to $+7^{\circ}\text{C}$, was registered in most of the SEE region. Weekly precipitation sums ranging n 25 mm to 200 mm were observed along Adriatic coast, western Greece and western key.

Climate change scenarios

- RCM-SEEVCCC regional climate model
 - SINTEX-G (INGV) initial and boundary conditions on 120 km resolution
 - RCM-SEEVCCC fully coupled atmosphere-ocean model (EBU-POM)
 - resolution: ~ 35 km atmosphere, ~ 20 km ocean
 - 1961-1990 present climate simulation
 - 2001-2030 SRES A1B scenario
 - 2071-2100 SRES A1B and A2 scenarios
- NMMB regional climate model
 - 1971-2000 with ERA40 initial and boundary conditions
 - 14 km resolution, lager part of the Europe
 - 8 km resolution, part of the Balkan peninsula
 - 1971-2100 RCP8.5 with CMCC-CM initial and boundary conditions
 - 8 km resolution, part of the Balkan peninsula

RCM-SEEVCCC

NMMB (Nonhydrostatic Multiscale Model on B grid):

- developed at NCEP (Janjic et al. 2013),
- unified global and regional model,
- ability to run with on-line stationary or moving nested domains

Present climate run:

- initial and boundary conditions: ERA40 reanalysis (250 km)
- resolution: 14 km and 8 km
- period: 1971-2000
- data used for verification: RHMSS network, EOBS, ERA40, CARPATCLIM

Future climate run:

- initial and boundary conditions: CMCC-CM (75 km)
- resolution: 8 km
- periods: 1971-2005, 2010-2100
- IPCC scenario: RCP8.5

NMMB present climate simulation: mean annual precipitation 1971-2000

More NMMB present climate results can be found in Djurdjevic and Krzic (2013).

Precipitation annual cycle (monthly precipitation)

Selected stations: Vrsac Beograd precipitation (mm/month) precipitation (mm/month) 100 100 8 90 90 80 80 70 70 8 0 0 60 60 0 8 0 8 0 0 50 50 0 0 40 40 8 8 0 30 30 20 20 10 10 JAN FEB NUL AUG SEP NOV DEC JAN FEB MAR APR MAY JUL OCT S. Palanka

precipitation (mm/month)	100 90 80 70 60 50 40 30 20	 	8	0	0	0	00	° °	0	0	O	0		
	10	JAN	FEB	MAR	APR	МАΥ	NUL	JUL	AUG	SEP	OCT	NOV	DEC	

Observations

NMMB-8

Rekovac

Daily precipitation - seasonal distributions

Hydrology component - HYPROM model

Precipitation and river discharge forecast at flash floods events and for regional climate simulations

S. Ničković, G. Pejanović, V. Djurdjević, M.Vujadinović

Hydro MODEL

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \left[\frac{\partial h}{\partial x} + S_{fx} - S_{0x} \right] = 0$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \left[\frac{\partial h}{\partial y} + S_{fy} - S_{0y} \right] = 0$$
$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} + H = 0$$

- dynamically treatment of an overland flow (NO kinematic approximation!)
- numerically stabile implicit time scheme for the friction term
- new numerical technique for preventing grid decoupling noise
- suitable for long term and flash flood simulations computationally efficient

O h - points+ u,v -points

A-B-C-D-E-F river points

Nickovic S. et al, HYPROM Surface-Runoff Prognostic Model, *Water Resource Research*

Moraca – Montenegro ADRICOSM Project

Land Surface Modelling

Sensitivity to soil type

CH constant

8.17

2.79

Morača (Montenegro)

Južna Morava – profile Grdelica

1915-2013 more than 850 torrential flood events in Serbia

More than 200 on Južna Morava

- heavy precipitation
- sudden snowmelt

43N

J. Morava Crdelica watershed 3718 km2 River Network

Grdelica, 23.01.2015

Jastrebac radar – observed precipitation and HYPROM model results

HYPROM forced with radar QPE vs observed river discharge

Radar precipitation input in HYPROM

Time step – 1 hour

At 15UTC model forecasted more than Q350m3/s for 21UTC

UTC		protok	sr.gr	sr.ap.gr	sr.kv.gr	cor	cef		OSMATRAN	ACI				I	ROGNOZ	ZA		
10 n =	21 erm:	330.33	-159.40	167.20	191.11	0.92	-1.59 mx:	444.	at:23 g3	350m3/s	at:18	:fct	mx:	196.	at:36	q350m3/s	at:-1	:fct
11 n=	21 erm:	330.33	-140.84	149.47	170.12	0.96	-1.05 mx:	444.	at:23 g3	350m3/s	at:18	:fct	mx:	220.	at:36	q350m3/s	at:-1	:fct
12 n=	21 erm:	330.33	-118.69	127.92	144.76	0.98	-0.49 mx:	444.	at:23 g3	350m3/s	at:18	:fct	mx:	249.	at:21	q350m3/s	at:-1	:fct
13 n=	21 erm:	330.33	-94.32	103.77	116.14	0.98	0.04 mx:	444.	at:23 q3	350m3/s	at:18	:fct	mx:	288.	at:22	q350m3/s	at:-1	:fct
14 n-	21 onm.	330 33	-66 95	76 40	83 81	0 08	0.50 mv.	111	at. 23 a3	250m3/c	a+ · 18	111.fct	mv ·	334	a+.77	a350m3/c	at. 1	111.fct
15 n=	21 erm:	330.33	-39.41	48.86	52.71	0.98	0.80 mx:	444.	at:23 g3	350m3/s	at:18	:fct	mx:	385.	at:23	q350m3/s	at:21	:fct
16 n=	21 erm:	330.33	-9.31	21.81	32.02	0.97	0.93 mx:	444.	at:23 q3	350m3/s	at:18	:fct	mx:	444.	at:24	q350m3/s	at:20	:fct
1/ n=	ZI erm:	550.55	-2.05	22.01	52.04	0.90	0.92 mx:	444.	at:25 q5	00005/S	at:10	III:TCC	mx:	420.	at:25	dopomo/2	at:19	III:TCT
18 n =	21 erm:	330.33	-2.03	25.62	32.64	0.96	0.92 mx:	444.	at:23 q3	350m3/s	at:18	:fct	mx:	458.	at:23	q350m3/s	at:19	:fct
19 n=	21 erm:	330.33	-2.03	25.62	32.64	0.96	0.92 mx:	444.	at:23 q3	350m3/s	at:18	: f ct	mx:	458.	at:23	q350m3/s	at:19	:fct

NMM precipitation - Floods May 2014

1.33 km resolution NESTED - convection permitted

2015-10-01-08:1

WWW.SEEVCCC.RS

