Surface aspects in HIRLAM

Ekaterina Kourzeneva*, Mariken Homleid, Trygve Aspelien, Tomas Landelius, Patrick Samuelsson, Laura Rontu, Yurii Batrak, Homa Keyrollahpour, Carl Fortelius, Margarita Choulga, Clemens Wastl, Ulf Andrae

Contents

Operational R&D Soil and vegetation Snow SST and Sea ice Lakes Urban Orographic radiation Physiography Documentation

Operational status: HARMONIE-38h1.1

DA:in hor: OI for screen level temperature, relative humidity and snow depth, bilinear interpolation for SST in ver: OI for soil temperature and soil moisture obs: SYNOP + national stations for snow in Norway, planned in Finland and Sweden, OSTIA

physiography:

ECOCLIMAP(II), FAO soil map, GTOPO surface layer fluxes: CANOPY

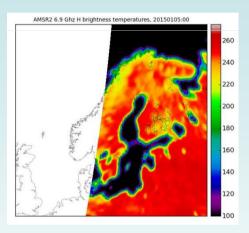
surface schemes: SURFEX7.2, 4 tiles - water and sea, urban, nature; ISBA 3L, D95 scheme for snow

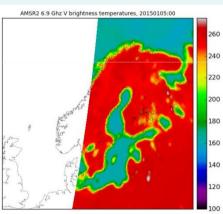
- Operational problems:
 Unrealistic deep soil T under snow in some points sort of instability wrong weights in DA solved
 Artifacts in snow analysis coastal stations QC ?
 Melting of permanent snow in Iceland ?

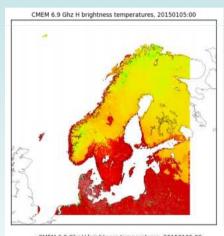
R&D: Soil and vegetation

Goal: to run advanced snow schemes in operational

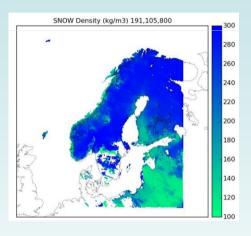
- Tests with ISBA-DIF ongoing
- Snow-on-veg. MEB is now possible with ISBA-FR
 - thanks to Aaron Boon!
- Plans to test ISBA-FR+ES+MEB
- More serious plans for Soil DA for ISBA-DIF!

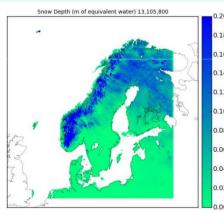

Soil Scheme	Soil DA	Snow scheme	Snow-veg scheme	Snow DA	Application
FR	OLEKF +OI(Canari)	D95	none	snowOI(Canari)	NWP
		ES	MEB	/(tmm+Ol/YAR/ERF)) +:mm+Ol/Canari)	N. T
			none	[(znawOIVAR/EKF)] +snowOI(Canari)	NWP
		CRO	MEB	[(snowOIVAR/EKF)] +snowOI(Canari)	NWP
			mone	[(snowOIVAR/EKF)] +snowOI(Canari)	NWP
	none	D95	none	Bone	climate
		ES	MEB	none	citmate
			none	none	climate
		CRO	MEB	none	cimate
			none	none	climate.
DIF	(e) (f) (f) (f) (f) (f)	D93	none	znowOI(Canari)	NWP
	+Ol(Cavari)	A	MES	[[:no+0](7/LL[:EEF]] -:now0[/Const)	Size
			none	[(snowOlVAR/EKF)] +snowOl(Canari)	NWP
		CRO	MEB	[(inowOlVAR/EKF)] +snowOl(Canari)	NWP
			none	[(snowOlVAR/EKF)] +snowOl(Canari)	NWP
	none	D95	none	none	climate
		ES	MEB	none	climate
			none	none	climate
		CRO	MEB	none	climate
			none	none	climate

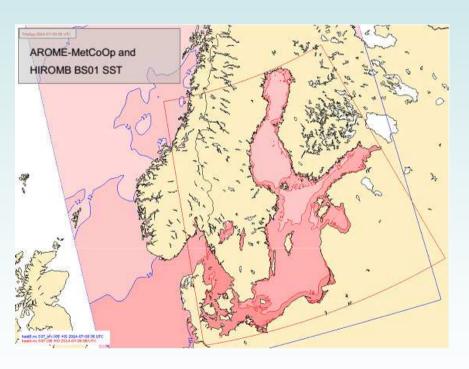

Plans: IMproving PRedictions and management of hydrological EXtremes - IMPREX - the surface soil moisture from ASCAT

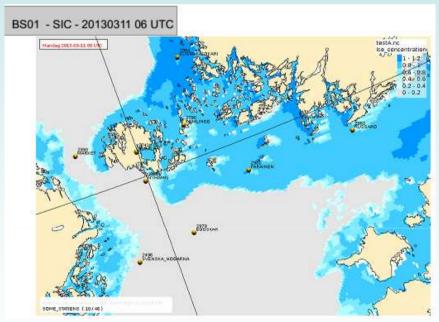


R&D: Snow


- First steps towards assimilation of AMSR2 (microwave) brightness temperatures to get SWE
- · Emission model CMEM (ECMWF) is used as obs operator



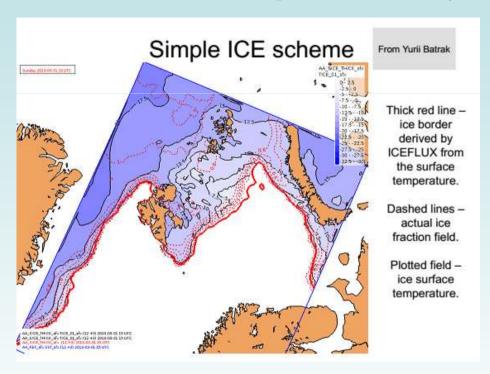


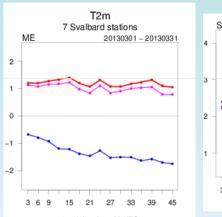


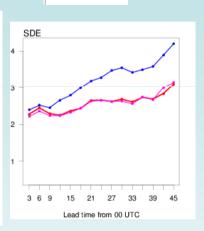
EWGLAM/SRNWP Meeting 05-08 Oct. 2015, Belgrade

R&D: SST and Sea ice

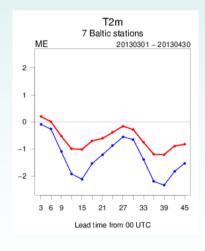
 SST and SIC from HIROMB for Baltic Sea - better resolution and quality than OSTIA, better scores for coastal stations

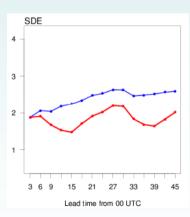


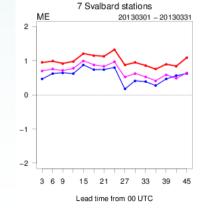




R&D: SST and Sea ice

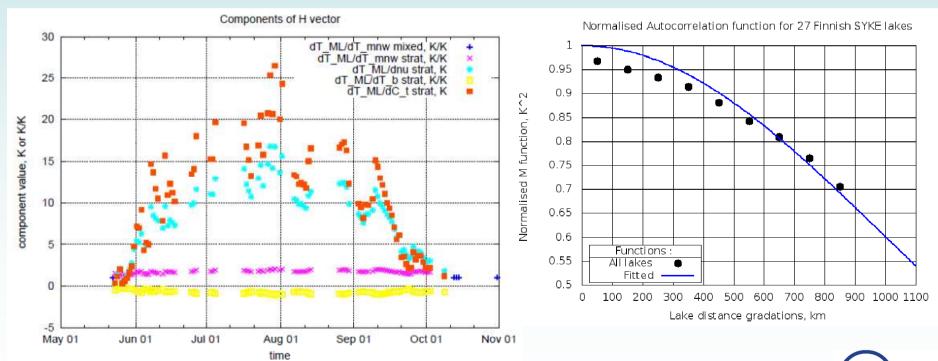

- SICE pre-operational (MetCoOp), also Arctic
- · Additional drag caused by ice obstacles





AA_SICE_THICK AA_CD_test

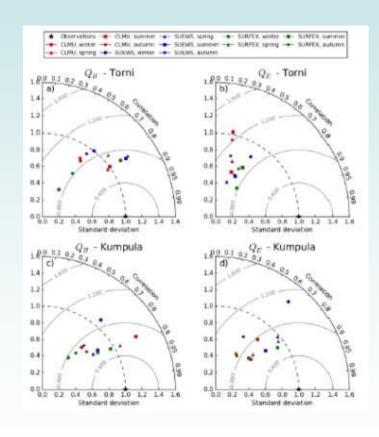
EWGLAM/SRNWP Meeting 05-08 Oct. 2015, Belgrade



FF10m

R&D: Lakes

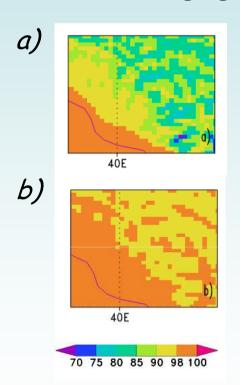
- Flake in 2D, SURFEX7.3, HARMONIE 38-40 -ongoing
- GLDBv3.1 included
- Tests in Antarctica
- Study of EKF Jacobians
- Structure functions for LST from obs

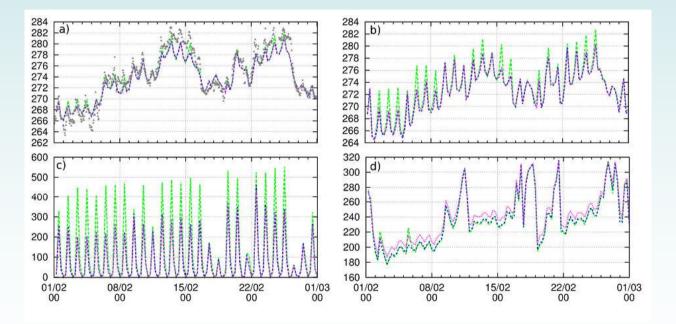

EWGLAM/SRNWP Meeting 05-08 Oct. 2015, Belgrade

Lake Inarijärvi, 14.3 m

R&D: Urban

Intercomparison study -SURFEX, SUEWS and CLM - obs: year 2012, SMEAR III tower and Hotel Torni - fluxes, much attention to snow and winter stability

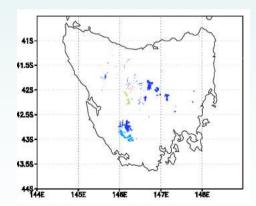



R&D: orographic radiation

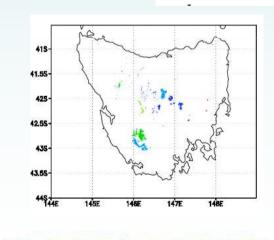
· Experiments over Caucasian mountains

Sky view factor without (a) and with (b) distance averaging

a)T2m, b) T_surf, c) SWD, d) LWD grey - obs, green - no ororad, magenta - with ororad



R&D: Physiography

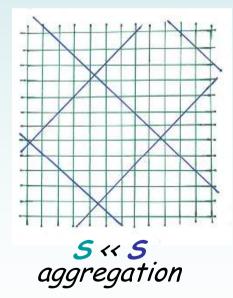

GLDB

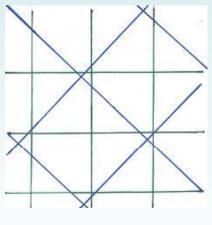
- problem with large rivers in GLDBv2 detected and fixed
- GLDBv3 released: indirect estimates of the mean lake depth for the Southern Hemisphere
- · first steps towads fine resolution, Globcover
- GLDBv3.1 bathymetry for 1 419 Finnish lakes (thanks to Charlotte Moisette!)

Tasmania

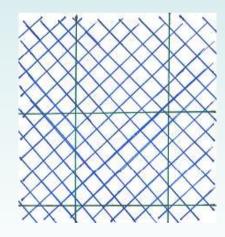
GLDBv2 and GLDBv3

R&D: Physiography

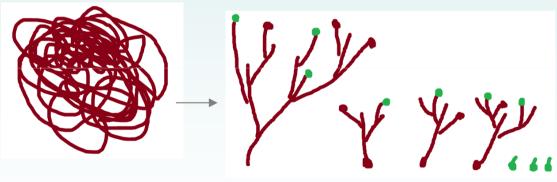

 Discussion about physiography for very fine scale: from aggregation to interpolation


Resolution of atm model: 2.5 km

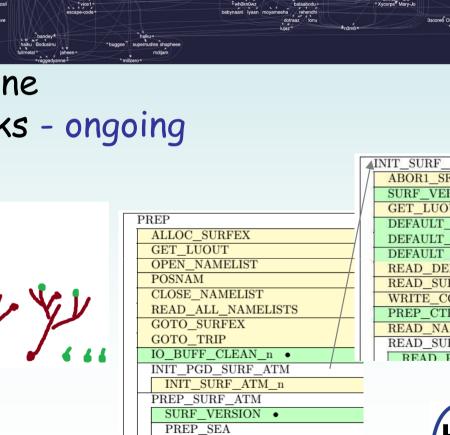
of surface data: 1.0 km


Is aggregation meaningfull?

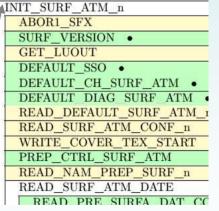
· Mathematical aspect, coding aspect



5 >> 5 interpolation



R&D: Documentation


- How to see the code structure?
- DOXYGEN: lists, graph ...
- to unravel the graph: make several graphs of one plain routines, utils, blocks - ongoing

EWGLAM/SRNWP Meeting 05-08 Oct. 2015, Belgrade

PREP_SEAFLUX
GET_LUOUT

Thank you!

