

Actual coordination activities within C-SRNWP

Balázs Szintai

with inputs from many of you...

GIE/EIG EUMETNET, Registered Number 0818.801.249 - RPM Bruxelles

Outline

- News from EUMETNET
- OPERA and NWP
- SRNWP support for EUCOS (Obs-SET)
- BUFR migration
- Extension of the ECMWF BC project to EPS
- SRNWP data pool
- Global Lake Data Base
- Physiographic data bases
 - **C-SRNWP Expert Teams**

٠

C-SRNWP highlights

News from the EUMETNET Forecasting Programme

- Nowcasting Phase II
- Approved by EUMETNET Council in December 2014
- Project name: ASIST (Application oriented analySIS and very short range forecasT environment)
- Duration: 1 July 2015 31 December 2017
- Coordinating Member: ZAMG (Austria)
- SRNWP EPS Phase II
- Approved by EUMETNET Council in May 2015
- Duration: 1 July 2015 31 December 2017
- Coordinating Member: AEMET (Spain) supported by USAM (Italy) with the involvement of ARPA-SIMC (Italy)

OPERA and **NWP**

•

Data are already there for testing \rightarrow access to volume data (wind and reflectivity) is enabled through HIRLAM (SMHI) (same as on ODC) without operational service level \rightarrow NWP centers can test the assimilation of the data

Anticipated difficulties:

- <u>Doppler wind</u>: maximum measurable speed varies between measurements. High speeds are shown as much smaller speeds. Correction (dealiasing methods) are being tested in SMHI.
- <u>Reflectivity</u>: from most radars, lack of distinction between *"undetect"* (valid "dry" measurement) and *"nodata"* (unknown status: cluttered, "wet" or "dry" measurement) pixels → we are throwing away valuable "dry" information

Plans for 2015/2016: collect experiences on the assimilation of volume data from ODC and local QC applications → feedback to OPERA (should be a loop)

OPERA data availability

Reflectivity

Doppler winds

GIE/EIG EUMETNET, Registered Number 0818.801.249 - RPM Bruxelles

OPERA and **NWP**

- ALADIN
 - Meteo-France: experiments with OPERA volume data (QC problems → raw data needed)
- COSMO
 - DWD: operational assimilation of OPERA rain rate
- LACE
 - OPERA developments are closely followed but no use of OPERA volume data yet
 - Internal radar data exchange for experiments
- HIRLAM
 - BALTRAD: Quality controlled data (BALTRAD QC Toolbox) from 10 countries (60-70 stations)

•

C-SRNWP highlights

Observation network design (support EUCOS, Obs-SET)

- Collect DFS (Degrees of Freedom For Signal) and FSO (Forecast Sensitivity to Observations) observation impact indicators from the SRNWP community \rightarrow this provides useful complementary information to Observing System Experiments
- The above is important in order to have an influence on the priority of EUCOS observation programmes/projects from an SRNWP perspective

Absolute Degree of Freedom for Signal (DFS)

Observation network design (support EUCOS, Obs-SET)

150000 100000 50000 0 SYNOP Z SYNOP U TEMP U TEMP T TEMP Z TEMP Q AMDAR U AMV AMSU-A AMSU-B MODE-S U SYNOP T AMDAR T MODE-S T SYNOP Q SEVIRI-WV

Absolute Degree of Freedom for Signal (DFS)

Relative Degree of Freedom for Signal (DFS/observations)

GIE/EIG EUMETNET, Registered Number 0818.801.249 - RPM Bruxelles

•

Analysis sensitivity to observations Summary

- Top 3 observations: Radar, SYNOP and AMDAR (TEMP is also important)
- Radar "works" well only in rainy regimes, while GNSS ZTD has a large impact both in rainy and dry regimes!
- The difference between absolute and relative DFS shows that there is a huge potential for LAMs in increasing the amount of humidity-related observations (RH2m from surface stations, AMDAR humidity, GNSS ZTD, radar Z).
- The high importance of AMDAR wind and temperature gives an impression that AMDAR humidity and Mode-S observations would make a large influence on the analysis.

TAC to BUFR migration

•

- Questionnaire sent in January 2015: replies from all consortia and ECMWF
- ECMWF maintains wiki page: <u>https://software.ecmwf.int/wiki/display/TCBUF/</u>
- General conclusions:
 - Several countries assimilate SYNOP in BUFR format
 - Only few countries assimilate radiosoundings in BUFR format → technical problems when generating BUFR message (simple conversion from TEMP to BUFR, not real BUFR message)
 - AMDAR BUFR assimilation still in progress

•

C-SRNWP highlights

ECMWF ENS LBCs to drive high resolution LAM EPS

- Thanks to ECMWF, high-resolution (T1279) IFS ENS runs were available to drive convective-scale EPS experiments (since January 2013) \rightarrow several NMSs were testing the T1279 LBCs
- Workshop to discuss the results and prepare a proposal (ECMWF, 9-10 December 2013) to the TAC Subgroup of the BC project \rightarrow 2 options proposed for IFS EPS LBC extensions (high-resolution, more runs)
 - A: 2 extra runs of IFS ENS (at 06 and 18 UTC) with present resolution (including the planned upgrade in 2015), 6 days forecast range, 50+1 members, hourly output (this last also for the operational 00 and 12 UTC runs)
 - B: 2 extra runs of IFS ENS (at 06 and 18 UTC) with present resolution (included the planned upgrade in 2015), 50+1 members up to a 3 day forecast range, then 20 + 1 members up to 6 day forecast range, hourly output (this last also for the operational 00 and 12 UTC runs)
- TAC subgroup reviewed the above proposal and recommended to go for option A
- 18 and 06 UTC runs will require additional manpower and SBU from BC project members
 → ~0.5% increase in the contributions, 20% of SBUs dedicated to BC project → TAC decided to put the proposal further to Council → Council approved (December 2014)
- Real time test data (3h output until 5.75 forecast range, no archiving) is now available
- 1h output with new IFS cycle

SRNWP data pool

- 7 new users (3 from universities) since May 2014 (Germany, Finland, Italy, Switzerland)
- New data policy proposed through STAC/PFAC (October 2013) allowing an access to universities
- EUMETNET Assembly approved the new data policy (November 2013)
- "terms and conditions of use" of the data pool have been updated at the portal
- Complete data from Debrecen (Hungary) station

Plans for 2015-2016

Promote the data to universities (through the NMHSs)

Global Lake Data Base

•

•

A budget is necessary to maintain and further develop this data base (important for surface modeling in NWP) \rightarrow LACE offered to ensure the necessary funding for 2015

•

C-SRNWP highlights

Use of "geospatial data" at high resolution

- Higher resolutions → stronger and stronger dependence on "geospatial forcing" (*orography* like ASTER, SRTM, GTOPO30, GMTED2010, *soil texture* like HWSD, *land-use* like Ecoclimap, Corine, Globcover)
- Web meeting December 2014
- Participants from COSMO, HIRLAM, ALADIN, LACE
- Topics discussed:
 - Setting up common workspace/wiki pages
 - Revival of SRNWP Surface Expert Team
 - Coordinated sensitivity studies

C-SRNWP Expert Teams

8 C-SRNWP Expert Teams

- Data Assimilation
- Diagnostics, validation and verification
- Dynamics and lateral boundary coupling
- . Link with applications
- Physical parameterisation (upper air)
- Predictability and EPS
- Surface and soil processes
- System aspects

Thank you for your attention!

Balázs Szintai C-SRNWP Project Manager GIE/EIG EUMETNET

<u>C-SRNWP Project Manager</u> Hungarian Meteorological Service Kitaibel Pál u. 1 Budapest, Hungary

Tel: + 36 1 3464705 Fax: + 36 1 3464669 Email: szintai.b@met.hu Web: srnwp.met.hu

GIE EUMETNET Secretariat

c/o L'Institut Royal Météorologique de Belgique Avenue Circulaire 3 1180 Bruxelles, Belgique

Tel: +32 (0)2 373 05 18 Fax: +32 (0)2 890 98 58 Email: info@eumetnet.eu Web: www.eumetnet.eu