

Republic Hydrometeorological Service of Serbia (establishted 1888, WMO member since 1947)

Modelling cloud-aerosol (dust) interactions: a potential for further NWP improvements

S. Nickovic

with contributions of G. Pejanovic, B. Cvetkovic and S. Petkovic

Republic Hydrometeorological Service of Serbia (RHMSS), Belgrade, Serbia

37th EWGLAM and 22th SRNWP Meeting, 5-8 October 2015, Belgrade, Serbia

Why to consider atmospheric desert dust as a factor in NWP models?

- Atmosphere is modified by dust
 - Through <u>direct effects</u> (affecting radiation)
 - Through <u>indirect effects</u> (affecting clouds)
- Why dust is a major aerosol?
 - Most abundant
 - Specific chemical and physical features favorable for direct and indirect effects

IPCC: Both magnitude and the sign of dust radiative forcing yet unresolved (unknown positive or negative)

How much dust affects the atmospheric radiation?

The outgoing longwave radiation anomaly in the UK operational model over the Sahara due to dust

(Haywood, et al., 2003)

Cooling surface temperature by ~5°C in DREAM model (not only over Sahara!) (Nickovic et al, 2004; Perez et al, 2006)

Heterogeneous cold clouds formation

- Several *Science* and *Nature* articles published since 2013 indicate the importance of dust speciffically
- Mineral dust particles act as <u>the most efficient</u> heterogeneous ice nuclei in the tropospheric clouds
- Dust particles lifted to the colder tropopause cause earlier glaciation of supercooled cloud water

Ice formation and precipitation

Koop and Mahowald, Nature, 2013

Dust: key catalyst for cold-cloud formation even far away from sources

- 2/3 of ice clouds formed due to pure dust and dust metalics
- Only small dust concentration needed
- Dust mineralogy matters!

Sciencexpress

Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation

Daniel J. Cziczo,¹* Karl D. Froyd,^{2,3} Corinna Hoose,⁴ Eric J. Jensen,⁵ Minghui Diao,⁶ Mark A. Zondlo,⁶ Jessica B. Smith,⁷ Cynthia H. Twohy,⁸ Daniel M. Murphy²

DREAM - Dust Regional Atmospheric Model

(Nickovic et al, 2001; Pejanovic et al, 2010; Vukovic et al, 2013)

- Widely used dust model in the community
- Operational dust forecasts within the WMO dust SDS-WAS model intercomparison project

Dust data assimilation in DREAM

(Nickovic, Pejanovic, Solonos, Cvetkovic, Petkovic, work in progress

- Collaboration with NOA (Greece) and UK MetOffice
- Observations: MSG/SEVIRI Dust Optical
 Depth (DOD) over ground only for the
 moment

 $+k(C-C_T)=0$

- Newtonean Nudging $k \sim 10^{-5}$

 $k \sim 10^{-4}$

k≈10⁻³

6

С

IN parameterization in NMM-DREAM

Example of a typical cloud parameterization in today's models

$$\frac{\# IN = 100 \ m^{-3} = const}{\partial t} \quad \frac{\partial N_{ice}}{\partial t} = \dots - \frac{N_c (\# IN)}{q_{ice}} ICEGEN \quad \frac{\partial q_{ice}}{\partial t} = \dots - f (ICEGEN)$$

e.g. Bangert et al, 2011

- Most operational microphysics schemes use predefined #IN
- Instad, we plan to use #IN as predicted variable in the Thompson "dust-friendly" microphysics (MWR,2012)

DREAM #IN parameterization

DREAM dust model

- 25km resolution; Sahara/Mediterranean region
- $-\,$ Particle bin radii: 0.15, 0.25, 0.45, 0.78, 1.3, 2.2 ,3.8 , 7.8 μm

Immersion ice nucleation (two options) [-35°C <T<-5°C]

DeMott et al, (2010)

$$n_{IN} = (n_{dust})^a 10^{[bT+c]} \left| \frac{\#}{m^3} \right|$$

Niemand et al (2012)

$$n_{IN} = S_{dust} e^{-mT+n} \left[\frac{\#}{m^3}\right]; S_{dust} = surface of dust particles$$

Deposition ice nucleation [-60°C <T<-35°C]

Steinke al (2014)

$$n_{IN} = S_{dust} 1.88 \cdot 10^5 e^{-pT + q(RH_{ice} - 100\%)} \left[\frac{\#}{m^3}\right];$$

Model #IN vs. MPL lidar, Izana

0.0

MPL-3 S.C. de Tenerife 2013-08-21

MPL-3 S.C. de Tenerife 2013-08-22

20

MPL Lidar (Tenerife)

1.5

0.0

2.0

1.5

0.5

September 2012 event

• One week of moderate Saharan dust in the central Mediterranean

MODIS maps produced with the Giovanni, developed and maintained by the NASA GES DISC

Sep 2012 dust case - Potenza

z-t graph
Model #IN (color bar)
vs.
MIRA55 Ice Cloud

Water(black line)

Thank you !