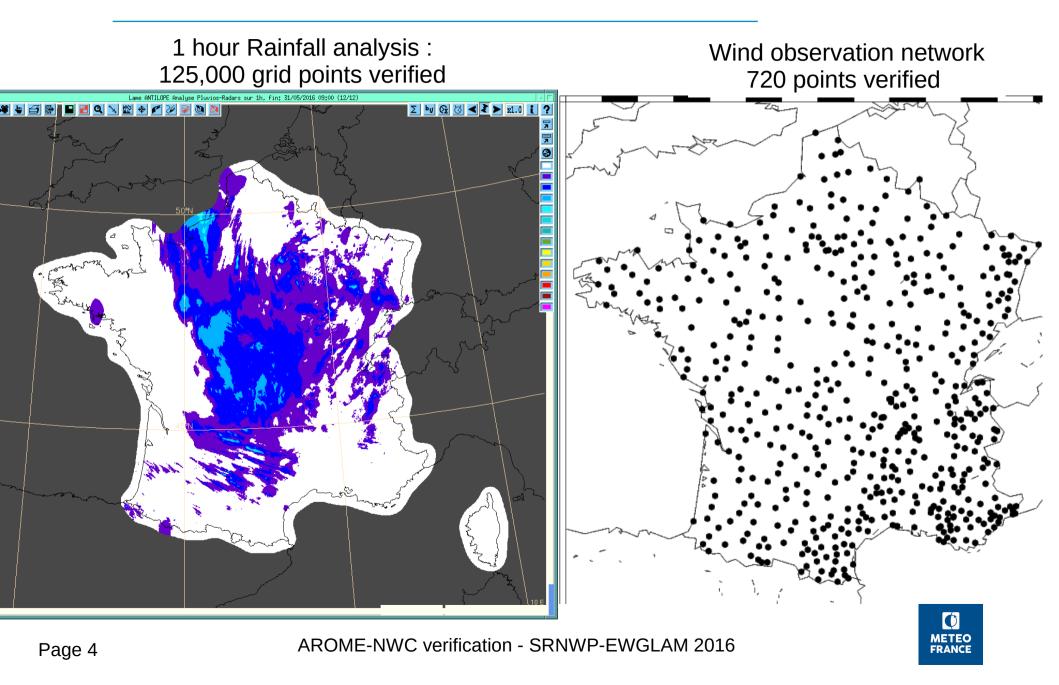


Verification of the nowcasting version of AROME-France

Isabelle Sanchez Verification team, Météo-France SRNWP- EWGLAM meeting, october 3-6 2016

AROME-NWC verification

- Operational forecast verification
 - Outlines
 - 1 hour rainfall skill
- Rare event scores
 - Information brought by different indexes
- Perspectives



Operational verification Outlines

- Since march 2016: official starting date for AROME-NWC
- What is verified
 - 24 runs every day
 - 6 hours range
 - Wind force and Wind gust against surface observations
 - 2m Temperature against surface observations
 - 1h Precipitation against analysis ANTILOPE
- Comparison with AROME-France scores
- 3 month computation

References of verification for precipitation and wind

1 hour rainfall verification basics

- Reference from analysis ANTILOPE
- 3 months computation + comparison with AROME-France scores
- Contingency tables thresholds 0.5 1 2 3 4 5 10 mm/h

	Yes	No	Total forecasted
Yes	a (Hits)	b (False alarms)	a + b
No	C (misses)	d (correct negatives)	c + d
Total observed	a + c	b + d	a + b + c + d

Observed

Forecast

1 hour rainfall verification scores

Usual scores from Contingency tables :

$$Bias = \frac{Number of YES forecasted}{Number of YES observed} = \frac{a+b}{a+c}$$

Ability to forecast such events

$$POD = \frac{Hits}{Number of YES observed} = \frac{a}{a+c}$$
Proportion of observed event correctly forecasted

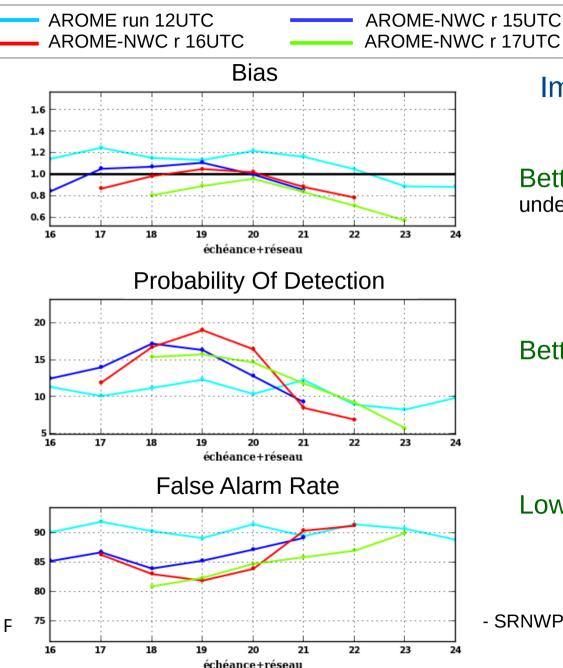
$$FAR = \frac{False Alarms}{Number of YES forecasted} = \frac{b}{a+b}$$
Proportion of forecasts actually did not occur

Obs Forecast	Yes	No	Total forecasted
Yes	a	b	a + b
No	с	d	c + d
Total observed	a+c	b + d	a + b + c + d

1 hour rainfall verification scores

In addition to "classic scores" : Brier Skill Score

Brier Score =
$$\frac{\sum (\text{Forcasted Probability} - \text{Observed frequency})^2}{N}$$


Brier Skill Score = $1 - \frac{\text{Brier Score}(\text{for AROME} - \text{NWC forecasts})}{\text{Brier Score}(\text{persistence})}$

- Uses an independent reference : persistence
- Allows comparisons between 2 models
- Summarises POD and FAR
- Used over neighbourhoods from 1 to 20 km

Also known as Fraction Skill Score with persistence as reference

Bias Pod and FAR for RR ≥ 5mm/h

2nd quarter 2016 : april – mai - june

Improvements compared with AROME

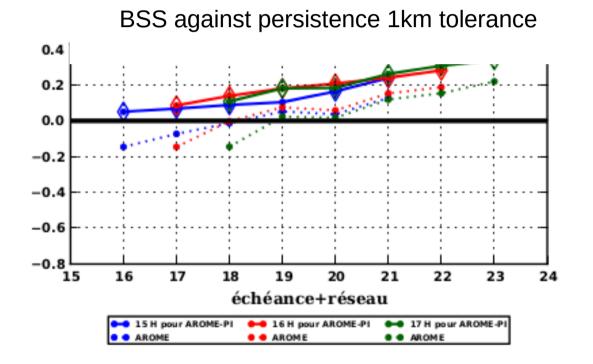
Better Biases but

under-estimation

- at 1rst range
- in the early evenning

Better POD but

few detections by both $10\% \rightarrow 20\%$


Lower FAR but High level 80 → 95%

- SRNWP-EWGLAM 2016

Brier Skill Score for RR ≥ 5mm/h

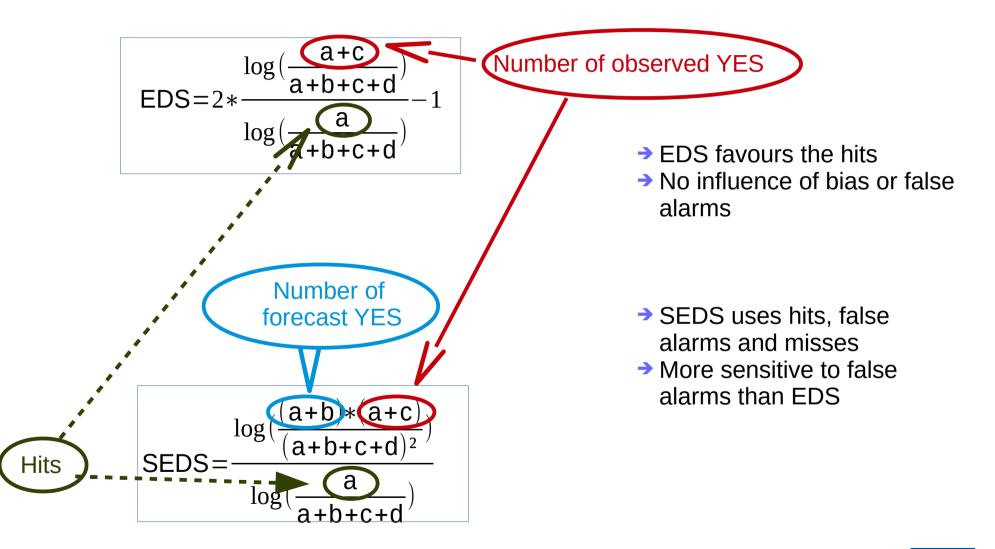
2nd quarter 2016 : april – mai - june

Summarizes POD and FAR informations

BSS > 0 for AROME-NWC

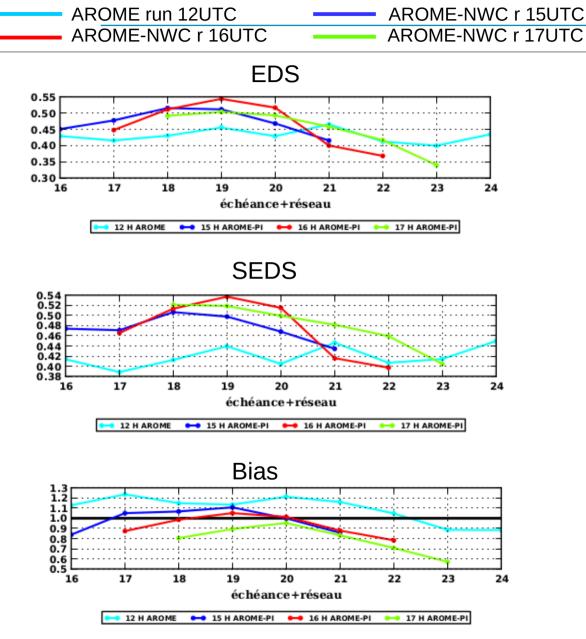
BSS < 0 for 1^{rst} hours of AROME

AROME-NWC BSS >AROME BSS


BUT Low values of BSS

Rare event scores

- Why
 - − Rare events : frequency < 0.5% for RR \ge 5mm/h
 - Low values of POD or BSS / high values of FAR
 - Sensitivity of classic scores to the climatology
- Needs
 - Found an index to measure improvements
 - AROME-NWC versus AROME
 - Reactive to software evolution
 - Necessity to be fair
 - Tested on AROME-NWC operable on other forecasts


Extreme Dependency Score / Symmetric EDS

EDS versus SEDS

2nd quarter 2016 : april – mai - june

For both scores

- Higher values / BSS or POD
- → Quite the same ranking

EDS

- Same information as POD
- No bias / FAR information

SEDS

- Sensitive to bias
- Penalizes false alarms

AROME-NWC verification - SRNWP-EWGLAM 2016

Extremal dependency index and Symetric

$$\mathsf{EDI} = \frac{\log(\mathsf{POFD}) - \log(\mathsf{POD})}{\log(\mathsf{POFD}) + \log(\mathsf{POD})}$$

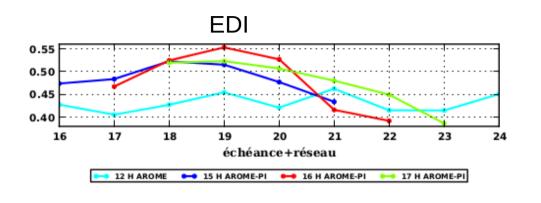
$$\mathsf{SEDI} = \frac{\log(\mathsf{POFD}) - \log(\mathsf{POD}) + \log(1 - \mathsf{POFD}) - \log(1 - \mathsf{POD})}{\log(\mathsf{POFD}) + \log(\mathsf{POD}) + \log(1 - \mathsf{POFD}) + \log(1 - \mathsf{POD})}$$

Where :

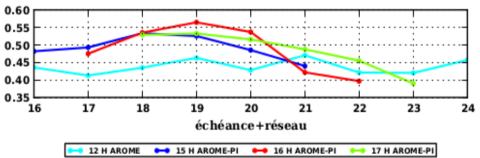
POD=	Hits	_ a
	Number of YES observations	a+c

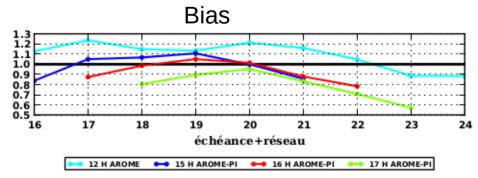
POFD = -	False alarms	b
	Number of NO observations	$\overline{b+d}$

- Range -1 to 1
- 0 no skill
- 1 perfect score


- Independent of the event frequency (number of Yes observations) more equitable than EDS/SEDS
- EDI can be optimized for biased forecasts

Reference : Ferro & Stephenson 2011; Extremal Dependence Indices: improved verification measures for deterministic forecasts of rare binary events.




EDI versus SEDI

2nd quarter 2016 : april – mai - june

- Higher values than BSS or POD
- Comparable to EDS and SEDS
- Exactly the same ranking for EDI and SEDI
- In this case very small differences between the two indexes
- → Is it a particular case ?

AROME-NWC verification - SRNWP-EWGLAM 2016

Perspectives

. . .

- AROME-NWC verification :
 - Define a synthetic index ?
 - Longer term : low visibility and ceiling diagnostics
- Next steps for rare events : more questions than answers
 - Are the differences significant ?
 - Persistence behaviour for rare thresholds ?
 - Does SEDI show improvements in modelling ?

