Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

5

COSMO Soil & Surface: -Activity Review-

Jean-Marie Bettems / MeteoSwiss (WG coordinator) Matthias Raschendorfer / DWD (reporting) Roma, EWGLAM/SRNWP, October 2016

TERRA – EURO-CORDEX

 EURO-CORDEX: Historical ERAint-driven RCM runs over Europe (0.44 degree) Edouard Davin, Eric Maisonnave, Sonia Seneviratne / ETHZ

Model	Institution	LSM
ALADIN 5.2	HMS	ISBA (Noilhan and Planton, 1989; Douville et al., 2000)
HIRHAM 5	DMI	(Hagemann, 2002)
WRF 3.3.1	IPSL-INERIS	NOAH (Ek et al., 2003)
RACMO 2	KNMI	(Balsamo et al., 2009)
HadRM 3P	MOHC	MOSES (Cox et al., 1999)
RCA 4	\mathbf{SMHI}	(Samuelsson et al., 2006)
REMO 2009	MPI-CSC	(Hagemann, 2002; Rechid et al., 2009)
RegCM 4.3	ICTP	BATS (Dickinson, 1984)
COSMO-CLM 4.8.17	CLM-Community	TERRA_ML (Doms et al., 2011)
COSMO-CLM ²	ETH Zurich	CLM4.0 (Oleson et al., 2010; Lawrence et al., 2011)

TERRA – EURO-CORDEX

- RMSE score integrating spatial and temporal performance (based on monthly means)
- Surface fluxes, temperature, precipitation •

÷

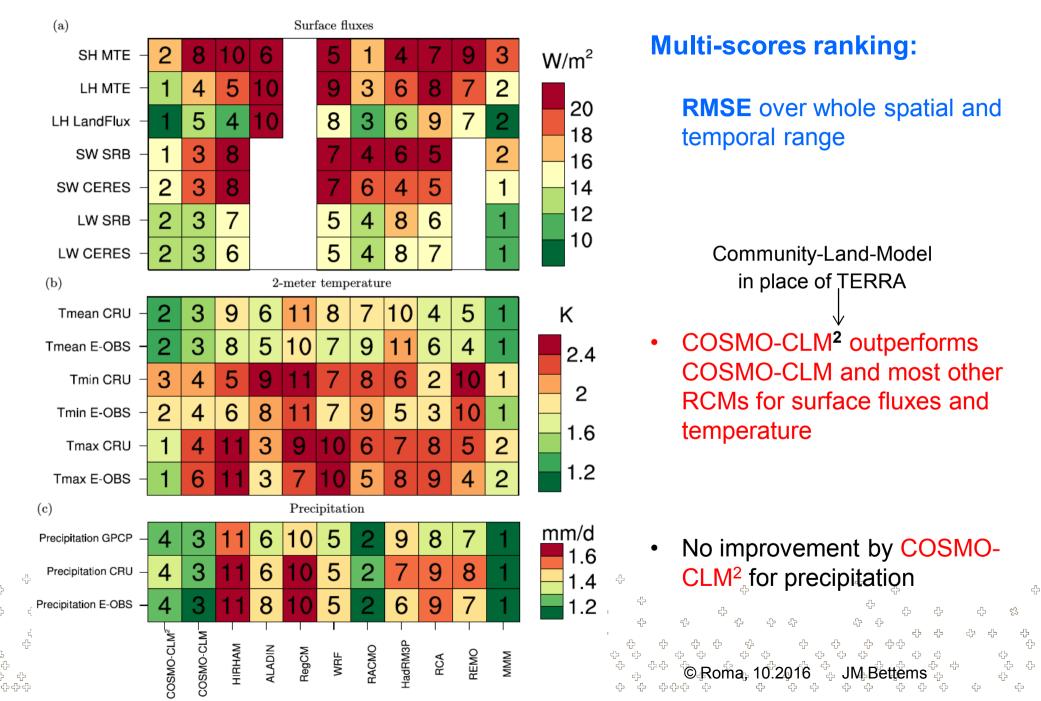
С С

÷

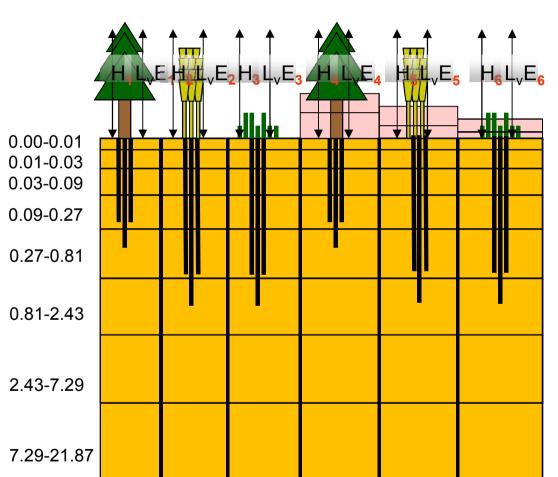
\$ 7

5 7 ÷

Whenever possible several reference datasets are used •


Dataset	Variables	Resolution	Time period	Reference
CRU TS3.22	2-m temperature precipitation cloud cover	0.5x0.5	1990-2008	(Harris et al., 2014)
E-OBS v11	2-m temperature precipitation	0.5 x 0.5	1990-2008	(Haylock et al., 2008)
GPCP2.2	precipitation	2.5 x 2.5	1990-2008	(Huffman et al., 2009)
FLUXNET MTE	latent heat sensible heat	0.5 x 0.5	1990-2008	(Jung et al., 2011)
LandFlux-EVAL	latent heat	1x1	1990-2005	(Mueller et al., 2013)
SRB3.0	shortwave radiation longwave radiation	1x1	1990-2007	(Zhang et al., 2015)
CERES	shortwave radiation longwave radiation	1x1	2001-2008	(Rutan et al., 2015)

4 P


TERRA – EURO-CORDEX

÷

袋 分 分

- → surface tiles (only in ICON so far)
- new treatment of a thermally decoupled surface cover (running development: M. Raschendorfer]
- more advanced treatment of snow-fraction (including effect of vegetation and SSO) and revision of interception store; ICON-version: G. Zängl)
- new multi layers snow model (not yet operational: E. Machulskaya)
- → resistance based bare soil evaporation (ICON-version, test-phase: J.-P. Schulz)
- exponential root density profile and impact of roots on thermal and hydraulic conductivity (ICON-version: J. Helmert)
- moisture dependent soil heat conduction (operational: J.-P. Schulz)
- → tuned GlobCover 2009 look-up table for landuse parameters (ICON-version: G. Zängl)
- some special tuning (desert, Geenland-ice,; ICON-version: G. Zängl)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Parameters and Data

£-42 슈 슈 ÷ 42 53 25 42 42 42 ß 42 42 ትት ትትት ት . م ትት ትትትትትት ት ኇኇኇ 42 -ф 4444 수수수수수 42 슈 승승승 승 4242 순순 ÷ 슈슈슈슈 444

External parameters

- External parameters recently added to EXTPAR
 - MACv2 aerosol climatology (→ Radiation)
 - Impervious surface area (\rightarrow TERRA-URB)
 - Annual mean anthropogenic heat flux (\rightarrow TERRA-URB)

TERRA-URB (Wouters, H., KU Leuven)

- Goal: add cheap but realistic bulk parameterization of urban effects mainly by adapted urban external parameters
- Benefit: variability of urban heat island well reproduced

Evaluation in progress at ARPA-Piemonte (Torino/Cira)

MeteoSchweiz

Status: *peer reviewed paper in '*Geoscientific Model Developme

code will be available in COSMO 5.05 code responsibility by Uli Blahak / DWD

Objective Calibration of COSMO Model (CALMO) Method : Omar Bellprat, ETH

- Describing the dependency of a (user oriented) model performance metric (that can be represented by observations) as a function of unsecure and sensitive model parameters by a <u>cheap</u> meta-model based on quadratic forms
- Searching for the global maximum (optimal parameter tuple) of the performance metric for the given parameter space (bounded by the valid range of each parameter) by means of the meta-model

Calibration of COSMO-2, daily 36h forecast, full year 2013

- **Performance function** based on Client Oriented Scale of Improvement (COSI)
 - score using T2m daily min/max, 24h precipitation
 - total column water
 - wind, temperature, humidity at 3 standard pressure levels

SRNWP data pool

Cardington

Fauga-Mauzao

Cabauw

Lindenberg

SanPietro Capofiume

Debrecen

- Access from COSMO web <u>http://www.cosmo-model.org/srnwp/content/default.htm</u> *(currently under maintenance)*
- Data from 2006-2015, in ASCII & NetCDF (no BUFR!)
- 9 sites (some for limited period)
- Soil, surface and BL observations
- Annual actualization (or earlier on request)
- Open for R&D-institutions
- Sometimes problems with quality and availability of a few stations
- Work done at DWD / Lindenberg:

Use the opportunity to get

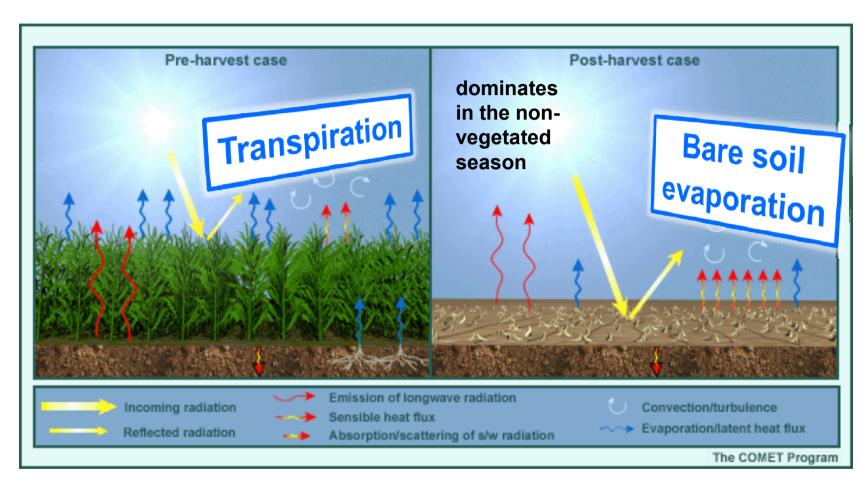
MeteoSchweiz

Advertise these data in COSMO-, SRNWP- or ECMWF-Newsletters!!

Sodankvla

Valdai

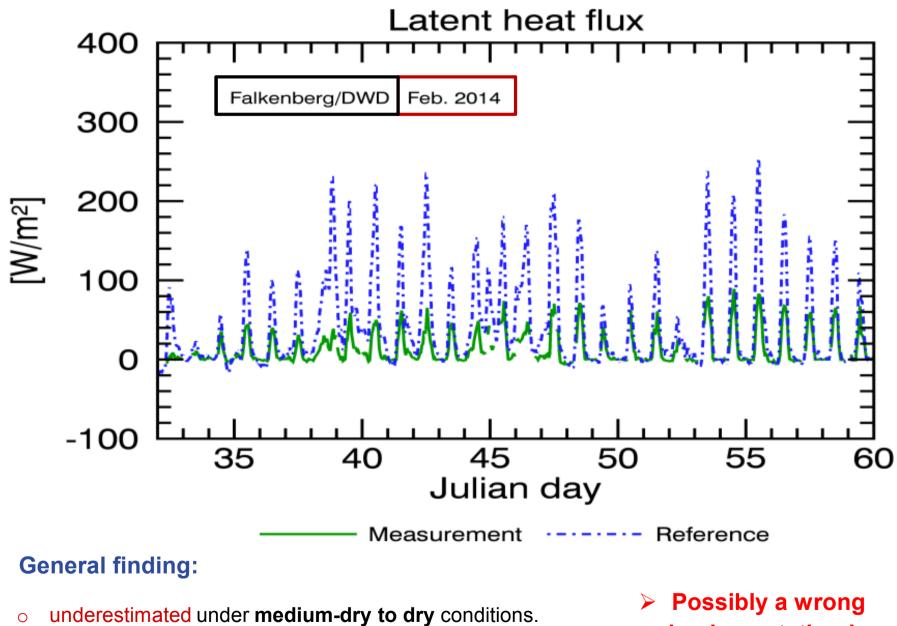
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra



Soil: TERRA

æ 4þ 슈 ÷ 53 ۍ بې َ ج ۍ ج 66 44 상 상 상 (<u>م</u> 42 유 유 42 ÷ ÷ 42 ትት ትትት ትትትት ትረ ۲þ. ်ငှင့်ငှင် 슈슈슈슈 <u>م</u> 수수수수수 슈 42 ትትትትት ትትት ት 수수수수수 수수수수수 ÷ · 45 ÷ 승수 수수수 · 수 수 수 수 수 수 666666666666

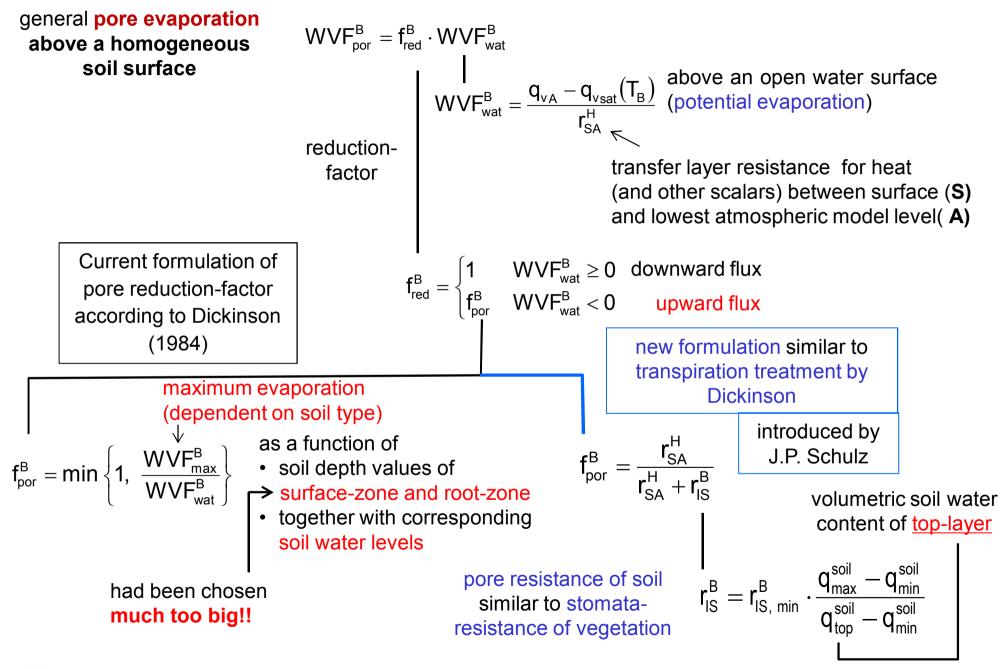
Implementation of a new parameterization of bare soil evaporation into the soil model TERRA


Jan-Peter Schulz¹ and Gerd Vogel²

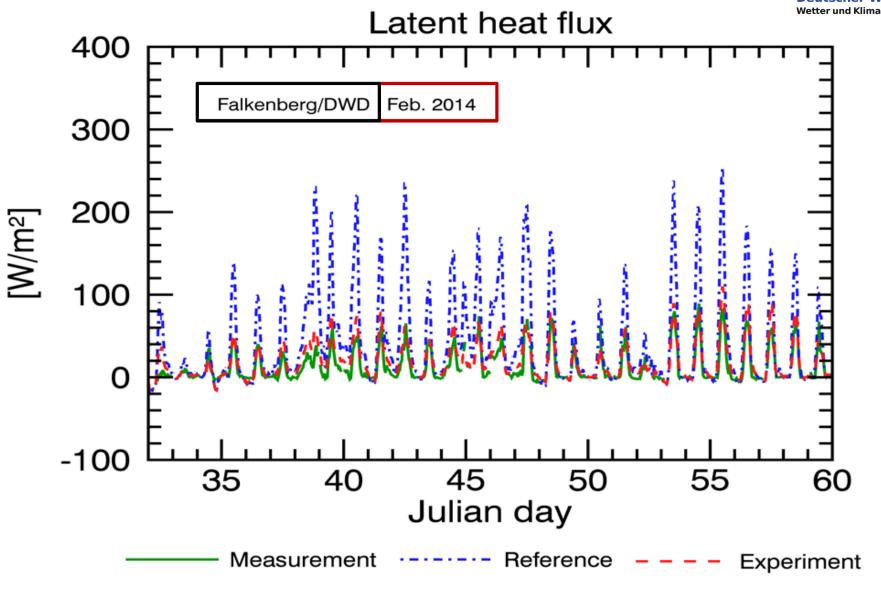
¹Deutscher Wetterdienst, Offenbach, Germany ²Deutscher Wetterdienst, Lindenberg, Germany

Schulz and Vogel: Evaporation

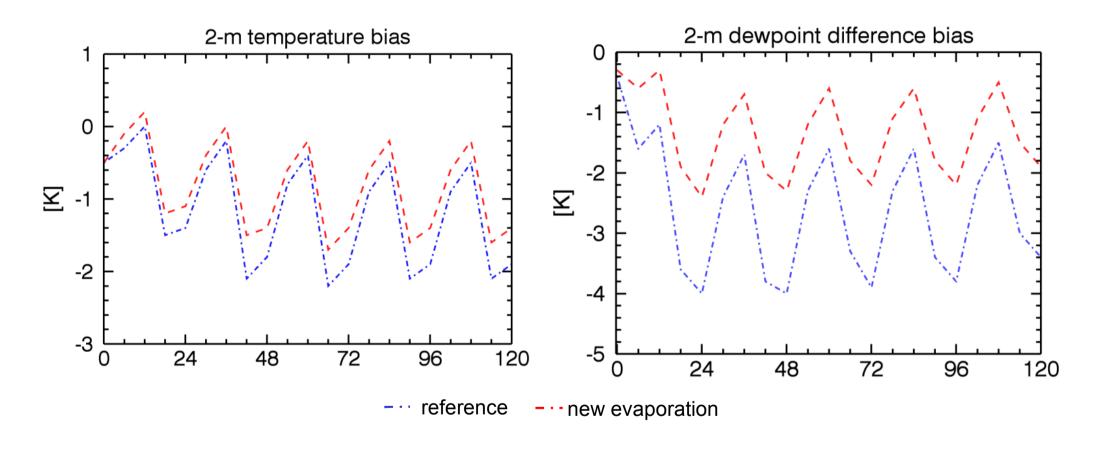
7 Mar. 2016


o overestimated under medium-wet to wet conditions.

 Possibly a wrong implementation in TERRA



Formulation of (downward) transfer layer water flux densities:



Overestimation of LHF substantially decreased!

ICON: NE America, January 2012, 00 UTC (snow-free)

 Cold bias significantly reduced! If evaporation is dominant compared to plant transpiration:

 Moist bias substantially reduced!

Schulz and Vogel: Evaporation

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

수 수 수 수 수 수 수

슈

÷

42

Roughness- and Transfer-

Layer:

45 45

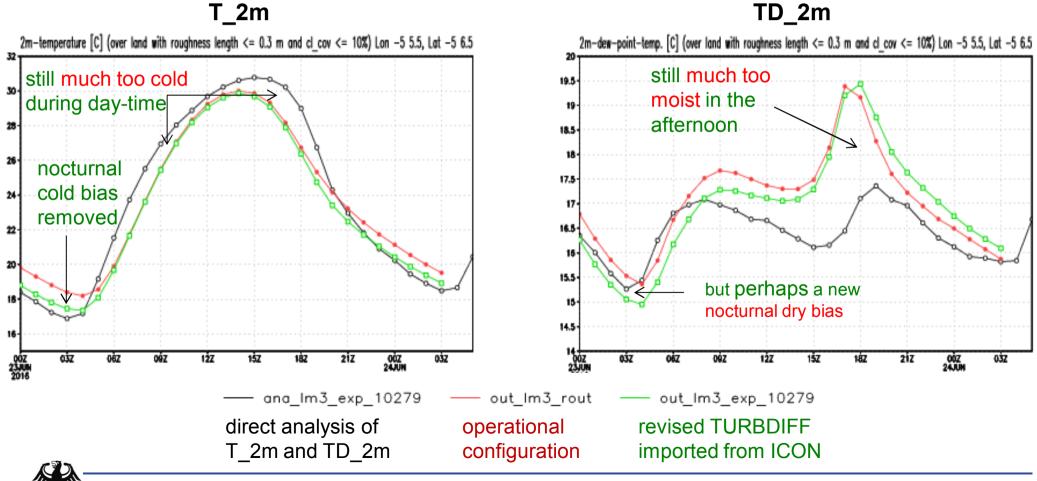
42

4242 42

Towards a new prognostic equilibrium surface temperature in combination with SAT and the soil model:

- ✓ Completion of the roughness layer model (TERRA-part)
- ✓ Thermal decoupling of a Cover built by roughness elements(canopy) above the dense soil (shading effect)
- ✓ Representation of the thermal energy storage of the roughness layer

Matthias Raschendorfer



Case study: 23.06.2016

COSMO-DE with lateral boundaries from ICON-EU

- ✓ only for rather smooth surfaces; applied filter
- ✓ almost saturated soil due to long standing rain period before
- ✓ almost no clouds due to high pressure situation; + applied filter
- domain averaged daily cycles of near-surface variables



Matthias Raschendorfer

• n cover layers including the surface of the dense soil (n=0) are connected by long-wave radiation interaction and sensible heat exchange

thermally decoupled roughness elements (shading)

 Only a part of the inner surfaces is connected to A by the resistance chain, the other part is for the inter-surface exchange

Matthias Raschendorfer

N:
$$T_A, q_{v_A}, p_A, (u_m, v_m)_A \longrightarrow$$

TURBTRAN

 $T_{A}, q_{v_{A}}, r_{S0}^{H}, r_{0A}^{H} \longrightarrow$ valid for **next** time level may be **out of equilibrium**valid for **this** time level,
associated to **current evapotranspiration**used for **next** time level

Diagnostic of surface temperature:

$$THF^{0} = (SRF^{0}_{u,d} + LRF^{0}_{d} + PHF^{0}) + LRF^{0}_{u} + \partial_{T}[LRF^{0}_{u}] \cdot (T^{0}_{R} - T^{0}_{S}) + SHF^{0} + LHF^{0} \rightarrow$$

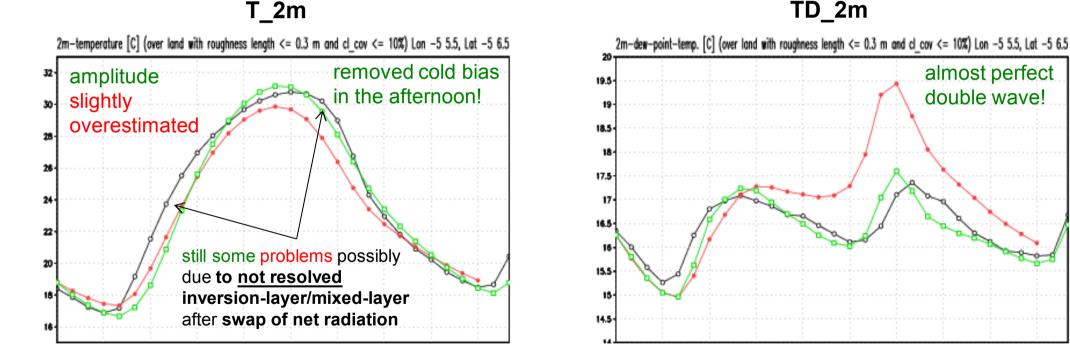
$$itype_surf=0$$

$$T_{C} = T_{B} + (T_{S} - T_{B})/a_{C} \qquad T_{R} = T_{B} + (T_{C} - T_{B}) \cdot a^{R}_{C}$$

$$= T_{B}$$

$$\begin{bmatrix} (MC)_{c} \\ \Delta t \\ (T_{C} - T^{0}_{C}) = THF^{0} + \partial_{T_{B}}[LRF^{0}_{u} + SHF^{0} + LHF^{0}] \cdot (T_{B} - T^{0}_{B}) + \partial_{T_{C}}[SHF^{0} + LHF^{0}] \cdot (T_{C} - T^{0}_{C})$$

$$= a_{B}T_{B} + a_{C}T_{C}$$


Case study: 23.06.2016

COSMO-DE with lateral boundaries from ICON-EU

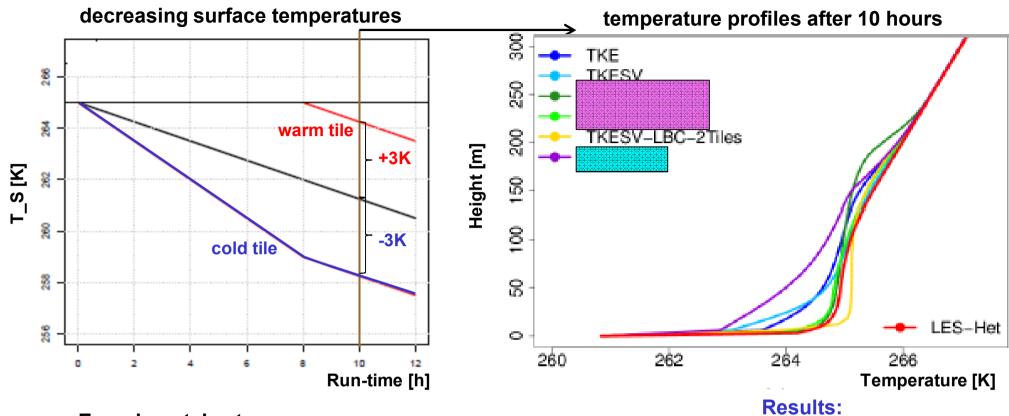
- ✓ only for rather smooth surfaces; applied filter
- ✓ almost saturated soil due to long standing rain period before
- ✓ almost no clouds due to high pressure situation; + applied filter

domain averaged daily cycles of near-surface variables

Matthias Raschendorfer

EWGLAM/SRNWP Rome 2016

Subgrid scale thermal surface heterogeneity treatment in the turbulence scheme for stable PBL


Ines Cerenzia^{1,2} Ekaterina Machulskaya³

¹ University of Bologna, Italy
 ² Arpae-Emilia Romagna SIMC, Italy
 ³ Deutscher Wetterdienst, Germany

Idealized simulation of the stable BL above thermal surface patterns:

Experimental setup:

- simulation with COSMO-Single-Column
- representing column above a 400X400m² idealized flat surface
- with 100X100m² checker board elements (of AT_S=6K after 8h)
- using TURBDIFF (with):
 - surface tiling (2Tiles),
 - a **STIC**-term for thermal driven near surface circulations (Tcirc)
 - progn. scalar variances (SV), (with) Var(T_S) as lower BC (SBC)
- COSMO-LES: 3.125 m horizontal resolution

- patterns of T_S even sharpen decoupling of surface
- already represented by tiling
- > non-linearity of "flux=K*grad(T)" dominates against extra mixing by thermal circulations
- Tcirc is a thermal SSO-term and (in contrast) produces MORE mixing. It should <u>not</u> be active at flat surfaces!

Physical Process in COSMO			Method		Name	Authors	
Local Parameterizations of atmospheric source terms		Radiation Transport		δ two-stream; revised optical cloud properties		Ritter and Geleyn (1992) Blahak (->)	
		Microphysics		1-moment; 3 prognostic ice phases; prognostic rain and snow		Doms (2004) Seiffert (2010)	
				optionally 2-moment version			
Grid-scale Parameterizations of sub-grid scale atmospheric processes (dependent on horizontal resolution)	···>	any other not yet considered process (e.g. SSO driven thermal circulations or horizontally propagating GW)					opagating GW)
	>	Convection	deep	2-class (updraft-downdraft) mass-flux equations with moisture convergence closure and simplified microphysics		Tiedke (1989), update by Bechthold et al. (2008) optionally	
			shallow				
	>	Sub-grid Scale Orography (SSO) effects		orographic blocking and breaking of vertically propagating Gravity Waves (GW)		Lott and Miller (1997)	
		Quasi-Isotropic Turbulence		2-nd order closure; progn. TKE with addit interaction terms (STIC); horizont. BL-ap with opt. 3D-extensions; turb. sat adj	oprox.	TURBDIFF	Raschendorfer (2001,->)
		Surface-to-Atmosphere Transfer and Roughness Layer effects		transfer resistances based on constant turbulent /laminar diffusion fluxes normal to roughness-covering surfaces; separate heat budget of roughness elements (shading)		TURBTRAN	
V		Vertical Heat and Water Transport of the Soil including Vegetation and a Snow-cover		1- layer snow; m layer soil; freezing of soil water; resistances for vapor from stomata of leaves and soil pores; moisture and root mass dep. conduct.; coupled with roughness-layer concept	not yet tiled	TERRA	Heise and Schrodin (2002), Schulz (2016, ->), Helmert (- >), Raschendorfer (->)
Modelling the Non- atmospheric part below the surface				optional mlayer snow		Maschulskaya (->)	
		Heat Transport and Phase Change of Lakes		1-layer with an assumed shape function of		FLAKE	Miropoy (2008)
		Heat Transport and Amount of Sea Ice		temperature profiles; including freezing of lake water and a possible snow-cover			Mironov (2008)
		DW					

