

Current and future configurations of MOGREPS-UK

Susanna Hagelin EWGLAM/SRNWP, Rome, 4 Oct 2016

www.metoffice.gov.uk

© Crown copyright

- Current configuration
- PS38 and package trial results
- Soil moisture perturbations case study
- Future options

MOGREPS-G

- 33 km
- Up to 7 days
- 00, 06, 12, 18 UTC
- 12 members

MOGREPS-UK

- 2.2 km, with 4 x 2.2 km transition zone
- 36 h
- 03, 09, 15, 21 UTC
- 12 members

Current status

- Uncertainties in the forecast are represented using:
 - ETKF for (global ensemble) initial conditions perturbations
 - SKEB and RP (global ensemble)
 - RP and stochastic perturbations in BL in MOGREPS-UK

MOGREPS-UK

- Run using LBC from the global ensemble and initial conditions from both UK deterministic model and the global ensemble
- Same model physics as the 1.5 km deterministic UK model (UKV)

What's new since last year

- OS 37 operational 15 March 2016
 - Two major upgrades to MOGREPS-UK

Centring around the UKV analysis - get more detailed initial conditions

275 278 281 284 287 290 293 296 299 K

Next parallel suite - PS38

- Domain size increase
 - Increase in the stretched grid only
 - From 532 x 654 to 740 x 752 gp
- Longer run length, t+54h
- Will become operational in November 2016
- Adding correlated BL perturbations (UKV and MOGREPS-UK)

Motivation:

Represent convection growing at the small (subgrid) scales to larger (resolved) scales in the absence of resolved forcing

Implementation:

To represent this up-scale transfer, we add random perturbations to the resolved scale flow whose magnitude is dependent on the subgrid flow

 \rightarrow the larger the surface heat flux, the larger the "backscatter" of temperature variability to the resolved scales in convectively unstable atmospheres

Extension to ensembles:

Developed for UKV but used in MOGREPS-UK – adds variability by using a different random seed for each ensemble member.

Anne McCabe, Adrian Lock

Case study - UKV test April showers (24th March 2015)

- Correlated perturbations initiate showers significantly earlier
- Cloud cover also have more cumulus, rather than stratus

32+ mm/h

Trial results on the larger domain

- Two trials
 - Summer: 15 June 15 July 2015
 - Winter: 4 Feb 2 March 2015
- Evaluated using HiRA (neighbourhood verification)
- Plots show both conservative trial (domain size only) and stretch package (correlated perturbations and mixing changes)

Soil moisture perturbations

- Insufficient spread near the surface
- SMC perturbations to improve temperature and humidity forecast
- Already used in MOGREPS-G
- Trials set up cycling t-12h soil moisture

24 July 2015

Joohyung Son

Soil moisture perturbations - case study 24 July 2015

1.5m Temperature & Deep soil temp (stash=8225, Level 1)

01 UTC 24 July 13 UTC 24 July 290 289 289 288 288 mean ensemble mean 1.5 m temperature 287 287 Ens ensemble control - -286 286 mean 285 285 SMC perts 284 284 283 283 30 35 10 15 20 25 30 10 15 20 25 35 0 0 Deep soil Fcst time (hr) Fcst time (hr) 0.8 0.5 temperature 0.7 04 control 0.6 0.5 spread SMC perts 0.3 spread spread 0.4 0.2 0.3 0.2 T02m_exp 0.1 T02m_cnl 0.1 TSoil exp TSoil cnl 0.0 0.0 15 20 25 30 35 0 10 15 20 25 30 35 Fcst time (hr) Fcst time (hr) 01 UTC

13 UTC

Joohyung Son

Future options

- Parallel suites
 - PS39 technical upgrade to adapt to the UKV implementing 4DVar
 - PS40 Hourly cycling with smaller ensemble (18 time-lagged members per 6h)
 - Convective scale ensemble data assimilation (PS44+)
- Current research focus on
 - Represent uncertainties in land-surface and apply RP scheme to land-surface parameters linked to vegetation and fluxes
 - Larger ensemble and/or higher resolution

Case study - Rainfall 13 UTC 5 July 2015

(+10 h fcst)

Probability of precipitation

mm/h

prob. of precipitation [%]

Met Office

Summary

- Changes in PS38 MOGREPS-UK
 - Extended domain
 - Longer run length
 - BL perturbations
 - Verification showed a positive signal in package trials
- SMC perturbations increase the spread
- Larger ensemble size gives a more positive signal in the forecast verification than the higher resolution

Thank you for your attention

