

AROME-NWC, a nowcasting tool based on AROME-France : description and experimentation

P. Brousseau, (MF/CNRM) and many colleagues from the nowcasting departement

38th EWGLAM and 23 SRNWP Meeting Rome, 05 October 2016

Plan

Description

The use of AROME-NWC

AROME-NWC

- Why ? :
 - To extend the forecast range for nowcasting up to ~6h
 - To improve the extrapolation technics for thunderstorms Nowcasting (impact of topography, information on trends on phenomena)
 - Help to forecasters
- How ? : adaptation of a NWP data assimilation/forecast system efficient at convective scale :
 - hourly refreshed runs
 - sub-hourly output (15 min)
 - available within 30 min after the latest observations
- Auger et al. 2014 (QJRMS)
- Operationnal since March 2016

Meteo-France NWP system : Current situation

Plan

AROME-NWC cut-off : + 10 min Versus 1h30 to 2h30 for AROME-France

 The background which is provided by the most recent AROME-France available run can be from 2 to 6 hours old

Cut-off Impact on the obs number

	AROME-France (12 UTC)	AROME-NWC
cutoff	+2h15	+10 min
Nb of available obs.	~1,3 millions	~ 709 000
Nb of assimilated obs.	110 000	82 000
Radar	75 000	75 000
Surface	7 500	5 200
Aircraft	3 200	1 200
Sounding	11 000	300
Satellites	14 000	40
GNSS	1 500	0

- Assimilated observations mainly provided by RADAR and screen-level measurements
- Less aircrafts and soundings, no satellites and GNSS observations compared to AROME-France.

AROME-NWC performances

HSS for 1h precipitation : 2 mm/h threshold

- 15 UTC AROME-Fr run is better than 15 UTC AROME-NWC run : more observations assimilated, guess more recent

AROME-NWC performances

HSS for 1h precipitation : 2 mm/h threshold

- 15 UTC AROME-Fr run is better than 15 UTC AROME-NWC run : more observations assimilated, guess more recent
- AROME-NWC runs are better than the last AROME-Fr run available at the same time

RANCE

AROME-NWC performances

HSS for 1h precipitation : 2 mm/h threshold

- 15 UTC AROME-Fr run is better than 15 UTC AROME-NWC run : more observations assimilated, guess more recent
- AROME-NWC runs are better than the last AROME-Fr run available at the same time Û
- The last AROME-NWC run is better than the previous one.

Plan

Description

The use of AROME-NWC

Web-dashboard for forecasters

 Lots of informations : need to help forecasters to quickly identify the meteorological situation and the parameters to monitor

2 visualisation modes

• For an AROME-NWC run : 6 forecast ranges on the same plot

25 september 14 UTC run

2 visualisation modes

 For a given validity time : the differents forecasts ranges valid at the same time from the differents AROME-NWC runs (« poor-man » ensemble like mode).

2 visualisation modes

 For the same validity hour : the differents forecasts ranges valid at the same time from the differents AROME-NWC runs (« poor-man » ensemble like mode). Can be confronted to observations in order to evaluate the system consistency

Subjective evaluation from Forecasters

 Results from an experimentation with forecasters over 73 meteorological issues during different situations (convection, fog, wind,...): How was AROME-NWC compared to AROME-Fr

Some forecaster critics

 the last AROME-NWC run is not necessarily/systematically the more accurate

Correct forecast of general features of reflectivity fields but

- +1 hour: correct dry area eastward high reflectivity line
- +4 and +5 hours: correct high reflectivity patterns in the South

Some forecaster critics

- the last AROME-NWC run is not necessarily/systematically the more accurate
- even if the first forecast ranges seem to be modified in the right way by the observations, the model offers a solution close to the one proposed by the AROME-Fr guess in the following forecast ranges
- in some convective situations, strong variability between the different successive AROME-NWC runs (jumpiness)

=> we will have to adress these problems in a near future...

Convection Nowcasting Object

 Detection and follow-up of convective objects on AROME-NWC simulated reflectivities

Data fusion (O.Mestre, P. Cau)

• Two « experts » :

- 2PIR method : Identification of cell displacement, diagnosis of motion field and extrapolation of observed radar reflectivities each 5 min up to 3hr

- the last AROME-NWC run available
- Fusion = α 2PIR + (1- α) AROME-NWC
- α defined by a dynamical 24h training : forecast range dependent and horizontaly homogeneous
- Verification and training : radar QPE
- Stategy : to be better than the best expert (to minimize the regret) (see for example : Auer, P., Cesa-Bianchi, N., & Gentile, C., 2002. Adaptive and selfconfident on-line learning algorithms. J. of Computer and System Sciences, 64, p. 48-75.)

Data fusion (O.Mestre, P. Cau)

Fusion = α 2PIR (extrapolation) + (1- α) AROME-NWC (NWP)

Conclusion

- AROME-NWC : not a new model but a new engineering production built for nowcasting
- Used by forecasters : need to adapt, condense and highlight the relevant information
- Used in a data fusion process

Thanks for your attention

00

Any Question

