

Recent achievements in the data assimilation systems of ARPEGE and AROME-France

P. Brousseau and many colleagues from (CNRM/GMAP)

38th EWGLAM and 23 SRNWP Meeting Rome, 04 October 2016

Meteo-France NWP system : Current situation

Meteo-France NWP system : Plans for 2018

- The 1-h assimilation cycle
- The current e-suite
- Towards the use of a convective scale EDA

Spin-up reduction

Spin-up reduction allowing 1-h assimilation cycle thanks to :

- a B matrix estimated from a forecast ensemble provided by an AROME EDA at the model resolution (instead of dowscaling of ARPEGE EDA) more representative of the model scales.

- the AROME analysis used as LBCs at initial time (avoid inconsistencies between the LBC from the global model and the model state inside the geographical domain)

- Residual spin-up du to imbalances between the analyzed fields (U,V,T,q and Ps) and other pronostics fields copied from the background, atmospheric and surface fields,...

ΛΕΤΕΟ

The tunning of the background error covariances

- B estimated from a forecast ensemble provided by an AROME EDA at the model resolution using a 3-h cycle :
 - but σb_1h stronger than σb_3h : unexpected result

- choice of using the 3h B matrix with reduced σb : $\sigma b_1h = \alpha$. σb_3h with $\alpha = 0.5$ provided by the σb Desroziers's diagnostics in the observation space with an iterative process.

 α values evaluated in assimilation experiments : 0.5 provides better performances in terms of RMS(obs-guess) and scores on precipitation simulation

METEC

1-h Assimilation cycle implementation

 The 12 UTC AROME-Fr run uses LBC from the 12 UTC ARPEGE run starting at 14h15

1-h Assimilation cycle implementation

- The 12 UTC AROME-Fr run uses LBC from the 12 UTC ARPEGE run starting at 14h15
- At this time, the 11, 12 but also 13 UTC analysis can be performed with a reasonable cut-off
- The 12 UTC AROME-Fr forecast, starting from the 12 UTC analysis is updated with the 13 UTC analysis using Incremental Analysis update

=> IAU is not needed for its filtering properties, only to update the forecast

Precipitation forecast performances

 HSS for 6h cumulative rainfalls averaged over 6, 12, 18 and 24h forecast range against raingauges measurements from 15 july to 30 septembre for different thresholds.

- The 1-h assimilation cycle
- The current e-suite
- Towards the use of a convective scale EDA

The current E-suite : Observations

ARPEGE/AROME :

- Assimilation of GMI (SSMIS like) on-board GPM Core (2 chanels at 183,31 GHz) and MWHS2 (MHS like) on-board FY3-C (3 chanels at 183,31 GHz)
- Assimilation of 4 window chanels from SEVIRI (chanels 4, 6, 7 and 8) over seas in ARPEGE

SEVIRI sensitivity to humidity

The current E-suite : Observations

ARPEGE/AROME :

- Use of a monthly surface emissivity atlas (Wisconsin university) for each IASI channel over continental surfaces instead of a constant value

The current E-suite : Observations

ARPEGE/AROME :

- Use of a Variational bias correction for GNSS observations :

- 3 predictors : constant, 1000-300 hpa thikness layer and TCWV

biased 5.75 unbiased 0.04 meanbias 5.71 monitbias -4.4 ectbiased 10.04 ectunbiased 8.94 ectbias 5.9

- The 1-h assimilation cycle
- The current e-suite
- Towards the use of a convective scale EDA

Convective scale EDA

- Currently : isotropic, homogeneous and climatological B matrix estimated with an offline EDA at the model resolution (1.3 km) only with perturbated observations
- As a first step toward an En-var system at Meteo-france : use of an operational convective scale EDA at a lower resolution (~3,8 km) with ~25 members :
 - perturbed initial conditions for the AROME based EPS (Raynaud et al 2015)
 - flow dependant B matrix for the AROME-france determinist 3D-Var
- Development of a new version of AROME EDA (Y. Michel) for operations
 - Observation perturbations
 - SPPT
 - SST and surface fields perturbation
 - multiplicative inflation scheme

B matrix hybridization

- To estimate B matrices for the determinist 3D-Var averaged over the 4 last assimilation times and refreshed every 3-h :
- Hybrid spectral covariances $Z(n) = [1-\alpha(n)] Z_{EDA}(n) + \alpha(n) Z_{CLIM}(n)$ with n : wave number

Spectral variance for T (left) and q(right) at 850 hPa

First results

I month experiment (winter period) : Sigmab profiles from 3.8km EDA vary around the 1.3 climatological Sigmab estimated during a winter période

Conclusions

- Since April 2015 AROME-France system uses a 1-h continuous assimilation cycle with a positif impact on the convective precipitation forecast (brousseau et al 2016, QJRMS)
- Current E-suite : important modifications in ARPEGE model (PCMT, surfex : see Claude's talk on thuesday) and slight changes in the DA system (mainly observations)
- Towards an operational use of a convective scale EDA :
 providing perturbed initial conditions for AROME EPS (Raynaud et
 - al 2015, QJRMS
 - allowing to introduce flow dependant covariances in AROME 3D-Var
- Developments of 3D/4D-Envar in the OOPS framework for ARPEGE and AROME

Conclusions

 3h assimilation window : single observation in the third timeslot :
 4D-Var and 4D-Envar (100 members, localisation 200 km) Timeslot 1
 Timeslot 2

3.184

2 531

878

1.224

0.571

0.082

0.735

-1.388

-2.041

Thanks for your attention

00

Plan

 Frequency biais for 24 h cumulative rainfall against 4000 daily raingauges over france (climatological french network) averaged over 1 glissant year

